Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5445-5454, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38304982

RESUMO

Ion exchange is an effective postsynthesis strategy for the design of colloidal nanomaterials with unique structures and properties. In contrast to the rapid development of cation exchange (CE), the study of anion exchange is still in its infancy and requires an in-depth understanding. Magic-size clusters (MSCs) are important reaction intermediates in quantum dot (QD) synthesis, and studying the ion exchange processes can provide valuable insights into the transformations of QDs. Here, we achieved anion exchange in Cd-based MSCs and elucidated the reaction pathways. We demonstrated that the anion exchange was a stepwise intermolecular transition mediated by covalent inorganic complexes (CICs). We proposed that this transition involved three essential steps: the disassembly of CdE1-MSCs into CdE1-CICs (step 1), an anion exchange reaction from CdE1-CICs to CdE2-CICs (step 2), and assembly of CdE2-CICs to CdE2-MSCs (step 3). Step 3 was the rate-determining step and followed first-order reaction kinetics (kobs = 0.01 min-1; from CdSe-MSCs to CdS-MSCs). Further studies revealed that the activity of foreign anions only affected the reaction kinetics without altering the reaction pathway. The present study provides a deeper insight into the anion exchange mechanisms of MSCs and will further shed light on the synthesis of QDs.

2.
Chem Sci ; 14(45): 13244-13253, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023525

RESUMO

Phase changes in colloidal semiconductor nanocrystals (NCs) are essential in material design and device applications. However, the transition pathways have yet to be sufficiently studied, and a better understanding of the underlying mechanisms is needed. In this work, a complete ligand-assisted phase transition from zinc blende (ZB) to wurtzite (WZ) is observed in CdSe nanoplatelets (NPLs). By monitoring with in situ absorption spectra along with electrospray ionization mass spectrometry (ESI-MS), we demonstrated that the transition process is a ligand-assisted covalent inorganic complex (CIC)-mediated phase transition pathway, which involves three steps, ligand exchange on ZB CdSe NPLs (Step 1), dissolution of NPLs to form CICs (Step 2), and conversion of CdSe-CIC assemblies to WZ CdSe NPLs (Step 3). In particular, CICs can be directly anisotropically grown to WZ CdSe NPL without other intermediates, following pseudo-first-order kinetics (kobs = 9.17 × 10-5 s-1). Furthermore, we demonstrated that CICs are also present and play an essential role in the phase transition of ZnS NPLs from WZ to ZB structure. This study proposes a new crystal transformation pathway and elucidates a general phase-transition mechanism, facilitating precise functional nanomaterial design.

3.
Nat Commun ; 14(1): 49, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599825

RESUMO

All-inorganic nanocrystals (NCs) are of great importance in a range of electronic devices. However, current all-inorganic NCs suffer from limitations in their optical properties, such as low fluorescence efficiencies. Here, we develop a general surface treatment strategy to obtain intensely luminescent all-inorganic NCs (ILANs) by using designed metal salts with noncoordinating anions that play a dual role in the surface treatment process: (i) removing the original organic ligands and (ii) binding to unpassivated Lewis basic sites to preserve the photoluminescent (PL) properties of the NCs. The absolute photoluminescence quantum yields (PLQYs) of red-emitting CdSe/ZnS NCs, green-emitting CdSe/CdZnSeS/ZnS NCs and blue-emitting CdZnS/ZnS NCs in polar solvents are 97%, 80% and 72%, respectively. Further study reveals that the passivated Lewis basic sites of ILANs by metal cations boost the efficiency of radiative recombination of electron-hole pairs. While the passivation of Lewis basic sites leads to a high PLQY of ILANs, the exposed Lewis acidic sites provide the possibility for in situ tuning of the functions of NCs, creating opportunities for direct optical patterning of functional NCs with high resolution.

4.
Front Chem ; 10: 860781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494634

RESUMO

Stabilizing nanocrystals (NCs) with high fluorescence quantum efficiency in suitable solvents and tuning of their optical properties precisely are critical for designing and assembling optoelectrical devices. Here, we demonstrated that by replacing the original X-type ligand (R-COO-) with triethylborate (TEB), zinc-blend structure nanoplatelets (Zb-NPLs) turn from hydrophobic to hydrophilic and are quite stable in polar solvents. More importantly, a large shift of 253 meV is observed for the TEB-passivated NPLs, which can be attributed to the strain of the crystal lattice and the electron or hole delocalizing into the ligand shell. It is worth noting that unlike conventional inorganic ligands, such as metal chalcogenide complexes or halides that quench fluorescence, TEB-treated NPLs maintain 100% of their original brightness in polar solvents with a slight increase in full width at half maximum (FWHM, 32 nm). Furthermore, we explored the possibility of employing TEB as surface ligands for NPLs with different thicknesses and compositions. We believe the discovery of new surface chemistry using borate-related ligands can greatly expand the potential application areas of NPLs.

5.
Chem Sci ; 13(40): 11755-11763, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320910

RESUMO

Surface engineering is a critical step in the functionalization of nanomaterials to improve their optical and electrochemical properties. However, this process remains a challenge in II-VI magic-size clusters (MSCs) due to their high sensitivity to the environment. Herein, we developed a general surface modification strategy to design all-inorganic MSCs by using certain metal salts (cation = Zn2+, In3+; Anion = Cl-, NO3 -, OTf-) and stabilized (CdS)34, (CdSe)34 and (ZnSe)34 MSCs in polar solvents. We further investigated the surface states of II-VI MSCs using electrochemiluminescence (ECL). The mechanism study revealed that the ECL emission was attributed to . Two ECL emissions at 556 nm and 530 nm demonstrated two surface passivation modes on (CdS)34 MSCs, which can be tuned by the surface ligands. The achievement of surface engineering opens a new design space for functional MSC compounds.

6.
Chem Commun (Camb) ; 55(10): 1486-1489, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30648171

RESUMO

In order to prepare a high energy density supercapacitor, multi-heteroatom modified porous carbon materials derived from biomass were adopted. The fabricated supercapacitor demonstrated an excellent energy density of 35 W h kg-1 and a high operating voltage window of 1.9 V in neutral Na2SO4 solution, exhibiting performance that is among the best of the current carbon materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA