Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
1.
Nature ; 629(8013): 851-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38560995

RESUMO

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Assuntos
Aves , Evolução Molecular , Genoma , Filogenia , Animais , Aves/genética , Aves/classificação , Aves/anatomia & histologia , Encéfalo/anatomia & histologia , Extinção Biológica , Genoma/genética , Genômica , Densidade Demográfica , Masculino , Feminino
2.
Cell ; 153(7): 1510-25, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23791179

RESUMO

The molecular mechanisms underlying the axon arborization of mammalian neurons are poorly understood but are critical for the establishment of functional neural circuits. We identified a pathway defined by two kinases, LKB1 and NUAK1, required for cortical axon branching in vivo. Conditional deletion of LKB1 after axon specification or knockdown of NUAK1 drastically reduced axon branching in vivo, whereas their overexpression was sufficient to increase axon branching. The LKB1-NUAK1 pathway controls mitochondria immobilization in axons. Using manipulation of Syntaphilin, a protein necessary and sufficient to arrest mitochondrial transport specifically in the axon, we demonstrate that the LKB1-NUAK1 kinase pathway regulates axon branching by promoting mitochondria immobilization. Finally, we show that LKB1 and NUAK1 are necessary and sufficient to immobilize mitochondria specifically at nascent presynaptic sites. Our results unravel a link between presynaptic mitochondrial capture and axon branching.


Assuntos
Axônios/metabolismo , Mitocôndrias/metabolismo , Neurônios/citologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP , Animais , Movimento Celular , Células Cultivadas , Feminino , Deleção de Genes , Técnicas de Silenciamento de Genes , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética
3.
Nature ; 594(7862): 227-233, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910227

RESUMO

The accurate and complete assembly of both haplotype sequences of a diploid organism is essential to understanding the role of variation in genome functions, phenotypes and diseases1. Here, using a trio-binning approach, we present a high-quality, diploid reference genome, with both haplotypes assembled independently at the chromosome level, for the common marmoset (Callithrix jacchus), an primate model system that is widely used in biomedical research2,3. The full spectrum of heterozygosity between the two haplotypes involves 1.36% of the genome-much higher than the 0.13% indicated by the standard estimation based on single-nucleotide heterozygosity alone. The de novo mutation rate is 0.43 × 10-8 per site per generation, and the paternal inherited genome acquired twice as many mutations as the maternal. Our diploid assembly enabled us to discover a recent expansion of the sex-differentiation region and unique evolutionary changes in the marmoset Y chromosome. In addition, we identified many genes with signatures of positive selection that might have contributed to the evolution of Callithrix biological features. Brain-related genes were highly conserved between marmosets and humans, although several genes experienced lineage-specific copy number variations or diversifying selection, with implications for the use of marmosets as a model system.


Assuntos
Callithrix/genética , Diploide , Evolução Molecular , Genoma/genética , Genômica/normas , Animais , Pesquisa Biomédica , Variações do Número de Cópias de DNA , Feminino , Mutação em Linhagem Germinativa/genética , Haplótipos/genética , Heterozigoto , Humanos , Mutação INDEL/genética , Masculino , Padrões de Referência , Seleção Genética , Diferenciação Sexual/genética , Cromossomo Y/genética
4.
Nature ; 587(7833): 252-257, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177665

RESUMO

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


Assuntos
Aves/classificação , Aves/genética , Genoma/genética , Genômica/métodos , Genômica/normas , Filogenia , Animais , Galinhas/genética , Conservação dos Recursos Naturais , Conjuntos de Dados como Assunto , Tentilhões/genética , Humanos , Seleção Genética/genética , Sintenia/genética
5.
Plant J ; 117(4): 1069-1083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947285

RESUMO

The color of purple carrot taproots mainly depends on the anthocyanins sequestered in the vacuoles. Glutathione S-transferases (GSTs) are key enzymes involved in anthocyanin transport. However, the precise mechanism of anthocyanin transport from the cytosolic surface of the endoplasmic reticulum (ER) to the vacuoles in carrots remains unclear. In this study, we conducted a comprehensive analysis of the carrot genome, leading to the identification of a total of 41 DcGST genes. Among these, DcGST1 emerged as a prominent candidate, displaying a strong positive correlation with anthocyanin pigmentation in carrot taproots. It was highly expressed in the purple taproot tissues of purple carrot cultivars, while it was virtually inactive in the non-purple taproot tissues of purple and non-purple carrot cultivars. DcGST1, a homolog of Arabidopsis thaliana TRANSPARENT TESTA 19 (TT19), belongs to the GSTF clade and plays a crucial role in anthocyanin transport. Using the CRISPR/Cas9 system, we successfully knocked out DcGST1 in the solid purple carrot cultivar 'Deep Purple' ('DPP'), resulting in carrots with orange taproots. Additionally, DcMYB7, an anthocyanin activator, binds to the DcGST1 promoter, activating its expression. Compared with the expression DcMYB7 alone, co-expression of DcGST1 and DcMYB7 significantly increased anthocyanin accumulation in carrot calli. However, overexpression of DcGST1 in the two purple carrot cultivars did not change the anthocyanin accumulation pattern or significantly increase the anthocyanin content. These findings improve our understanding of anthocyanin transport mechanisms in plants, providing a molecular foundation for improving and enhancing carrot germplasm.


Assuntos
Antocianinas , Daucus carota , Antocianinas/metabolismo , Daucus carota/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética
6.
Gastroenterology ; 166(3): 466-482, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38065340

RESUMO

BACKGROUND & AIMS: Although immunotherapy shows substantial advancement in colorectal cancer (CRC) with microsatellite instability high, it has limited efficacy for CRC with microsatellite stability (MSS). Identifying combinations that reverse immune suppression and prime MSS tumors for current immunotherapy approaches remains an urgent need. METHODS: An in vitro CRISPR screen was performed using coculture models of primary tumor cells and autologous immune cells from MSS CRC patients to identify epigenetic targets that could enhance immunotherapy efficacy in MSS tumors. RESULTS: We revealed EHMT2, a histone methyltransferase, as a potential target for MSS CRC. EHMT2 inhibition transformed the immunosuppressive microenvironment of MSS tumors into an immunomodulatory one by altering cytokine expression, leading to T-cell-mediated cytotoxicity activation and improved responsiveness to anti-PD1 treatment. We observed galectin-7 up-regulation upon EHMT2 inhibition, which converted a "cold" MSS tumor environment into a T-cell-inflamed one. Mechanistically, CHD4 repressed galectin-7 expression by recruiting EHMT2 to form a cotranscriptional silencing complex. Galectin-7 administration enhanced anti-PD1 efficacy in MSS CRC, serving as a potent adjunct cytokine therapy. CONCLUSIONS: Our findings suggest that targeting the EHMT2/galectin-7 axis could provide a novel combination strategy for immunotherapy in MSS CRC.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Imunoterapia , Citocinas , Galectinas/genética , Repetições de Microssatélites , Instabilidade de Microssatélites , Microambiente Tumoral , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase
7.
Proc Natl Acad Sci U S A ; 119(43): e2109326119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35609205

RESUMO

The realization that ancient biomolecules are preserved in "fossil" samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia's indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis. Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis. When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.


Assuntos
Aves , Casca de Ovo , Animais , Humanos , Filogenia , Aves/genética , DNA/genética , Evolução Biológica , Fósseis , DNA Antigo
8.
New Phytol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622812

RESUMO

Boron (B) is crucial for plant growth and development. B deficiency can impair numerous physiological and metabolic processes, particularly in root development and pollen germination, seriously impeding crop growth and yield. However, the molecular mechanism underlying boron signal perception and signal transduction is rather limited. In this study, we discovered that CPK10, a calcium-dependent protein kinase in the CPK family, has the strongest interaction with the boron transporter BOR1. Mutations in CPK10 led to growth and root development defects under B-deficiency conditions, while constitutively active CPK10 enhanced plant tolerance to B deficiency. Furthermore, we found that CPK10 interacted with and phosphorylated BOR1 at the Ser689 residue. Through various biochemical analyses and complementation of B transport in yeast and plants, we revealed that Ser689 of BOR1 is important for its transport activity. In summary, these findings highlight the significance of the CPK10-BOR1 signaling pathway in maintaining B homeostasis in plants and provide targets for the genetic improvement of crop tolerance to B-deficiency stress.

9.
Acta Haematol ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368853

RESUMO

INTRODUCTION: Therapeutic options to improve myelodysplastic syndrome (MDS)-related cytopenias in patients with lower-risk MDS are limited, and cyclosporin A (CSA) is an available option. METHODS: We retrospectively analysed the clinical data of 153 consecutive patients with lower-risk MDS at our institution from July 1997 to October 2017. Propensity score matching method was used to balance the influence of confounding factors between patients with MDS treated with CSA and other conventional treatments (excluding CSA), and 50 pairs of cases were successfully identified for the final analysis. We assessed response rates, progression-free survival (PFS), overall survival (OS), and factors affecting response and survival. RESULTS: Haematological improvement (HI) was observed in 35 (70%) patients treated with CSA and in 25 (50%) patients treated with conventional therapies (P < 0.05), respectively. Treatment with CSA was a favourable prognostic factor for HI in lower-risk MDS patients of both cohorts in univariate analysis [odds ratio (OR) 2.333, P < 0.05], but not in multivariate analysis. In the multivariate analysis, hypocellular marrow was the only independent prognostic factor for HI in the CSA group (OR 6.259, P < 0.05), and in the overall cohort (OR 3.102, P < 0.05).CSA treatment did not improve PFS or OS (P > 0.05). CONCLUSION: CSA is a safe treatment and can significantly improve cytopenias in a substantial proportion of patients with MDS, especially in individuals with hypocellular bone marrow. However, CSA is not associated with PFS or OS.

10.
Mol Ther ; 31(2): 517-534, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36307991

RESUMO

N6-methyladenosine (m6A) is the most pervasive RNA modification and is recognized as a novel epigenetic regulation in RNA metabolism. Although the m6A modification involves various physiological processes, its roles in drug resistance in colorectal cancer (CRC) still remain unknown. We analyzed the RNA expression profile of m6A/A (%) with MRM mass spectrometry in human 5-fluorouracil (5-FU)-resistant CRC tissues, and used the m6A RNA immunoprecipitation assay to validate the m6A-regulated target. Our results have shown that the m6A demethylase FTO was up-regulated in human primary and 5-FU-resistant CRC. Depletion of FTO decreased cell growth, colony formation and metastasis in 5-FU-resistant CRC cells in vitro and in vivo. Mechanistically, we identified SIVA1, a critical apoptotic gene, as a key downstream target of the FTO-mediated m6A demethylation. The m6A demethylation of SIVA1 at the CDS region induced its mRNA degradation via a YTHDF2-dependent mechanism. The SIVA1 levels were negatively correlated with the FTO levels in clinical CRC tissues. Notably, inhibition of FTO significantly reduced the tolerance of 5-FU in 5-FU-resistant CRC cells via the FTO-SIVA1 axis, whereas SIVA1-depletion could restore the m6A-dependent 5-FU sensitivity in CRC cells. In summary, our findings demonstrate a critical role of FTO as an m6A demethylase enhancing chemo-resistance in CRC cells, and suggest that FTO inhibition may restore the sensitivity of chemo-resistant CRC cells to 5-FU.


Assuntos
Neoplasias Colorretais , Epigênese Genética , Humanos , RNA , Fluoruracila/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
11.
Parasitol Res ; 123(3): 168, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517567

RESUMO

Cattle ticks (Rhipicephalus microplus) are important economic ectoparasites causing direct and indirect damage to cattle and leading to severe economic losses in cattle husbandry. It is common knowledge that R. microplus is a species complex including five clades; however, the relationships within the R. microplus complex remain unresolved. In the present study, we assembled the complete mitochondrial genome of clade C by next-generation sequencing and proved its correctness based on long PCR amplification. It was 15,004 bp in length and consisted of 13 protein genes, 22 transfer genes, and two ribosomal genes located in the two strains. There were two copies of the repeat region (pseudo-nad1 and tRNA-Glu). Data revealed that cox1, cox2, and cox3 genes were conserved within R. microplus with small genetic differences. Ka/Ks ratios suggested that 12 protein genes (excluding nad6) may be neutral selection. The genetic and phylogenetic analyses indicated that clade C was greatly close to clade B. Findings in the current study provided more data for the identification and differentiation of the R. microplus complex and made up for the lack of information about R. microplus clade C.


Assuntos
Doenças dos Bovinos , Genoma Mitocondrial , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Rhipicephalus/genética , Filogenia , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Doenças dos Bovinos/parasitologia
12.
Ren Fail ; 46(2): 2359033, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38836372

RESUMO

OBJECTIVE: To determine the efficacy and safety of Astragalus combined with renin-angiotensin-aldosterone system (RAAS) blockers in treating stage III diabetic nephropathy (DN) by meta-analysis. METHODS: PubMed, Embase, Cochrane Library, Wiley, and Web of Science databases were searched for articles published between August 2007 and August 2022. Clinical studies on Astragalus combined with RAAS blockers for the treatment of stage III DN were included. Meta-analysis was performed by RevMan 5.1 and Stata 14.3 software. RESULTS: A total of 32 papers were included in this meta-analysis, containing 2462 patients from randomized controlled trials, with 1244 receiving the combination treatment and 1218 solely receiving RAAS blockers. Astragalus combined with RAAS blockers yielded a significantly higher total effective rate (TER) (mean difference [MD] 3.63, 95% confidence interval [CI] 2.59-5.09) and significantly reduced urinary protein excretion rate (UPER), serum creatinine (Scr), blood urine nitrogen (BUN) and glycosylated hemoglobin (HbAlc) levels. In subgroup analysis, combining astragalus and angiotensin receptor blocker significantly lowered fasting plasma glucose (FPG) and 24 h urinary protein (24hUTP) levels, compared with the combined astragalus and angiotensin-converting enzyme inhibitor treatment. Meanwhile, the latter significantly decreased the urinary microprotein (ß2-MG). Importantly, the sensitivity analysis confirmed the study's stability, and publication bias was not detected for UPER, BUN, HbAlc, FPG, or ß2-MG. However, the TER, SCr, and 24hUTP results suggested possible publication bias. CONCLUSIONS: The astragalus-RAAS blocker combination treatment is safe and improves outcomes; however, rigorous randomized, large-scale, multi-center, double-blind trials are needed to evaluate its efficacy and safety in stage III DN.


Renin-angiotensin-aldosterone system (RAAS) inhibitors are commonly used to treat diabetic neuropathy (DN) and Astragalus membranaceus components are known to improve DN symptoms.We aimed to establish the efficacy and safety of using Astragalus combined with RAAS inhibitors.Astragalus combined with RAAS inhibitors enhances the total effective rate of diabetic neuropathy response to treatment and reduces urinary protein excretion rate, serum creatinine, blood urea nitrogen and HbAlc.Sensitivity analysis affirms study stability, while publication bias was detected for total effective rate, serum creatinine, and 24 h urinary protein levels.


Assuntos
Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Nefropatias Diabéticas , Quimioterapia Combinada , Sistema Renina-Angiotensina , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Sistema Renina-Angiotensina/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Astrágalo , Ensaios Clínicos Controlados Aleatórios como Assunto , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/administração & dosagem , Resultado do Tratamento , Creatinina/sangue , Hemoglobinas Glicadas , Proteinúria/tratamento farmacológico
13.
Nano Lett ; 23(24): 11693-11701, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38018768

RESUMO

Three-dimensional (3D) electronic systems with their potential for enhanced functionalities often require complex fabrication processes. This paper presents a water-based, stimuli-responsive approach for creating self-assembled 3D electronic systems, particularly suited for biorelated applications. We utilize laser scribing to programmatically shape a water-responsive bilayer, resulting in smart 3D electronic substrates. Control over the deformation direction, actuation time, and surface curvature of rolling structures is achieved by adjusting laser-scribing parameters, as validated through experiments and numerical simulations. Additionally, self-locking structures maintain the integrity of the 3D systems. This methodology enables the implementation of spiral twining electrodes for electrophysiological signal monitoring in plants. Furthermore, the integration of self-rolling electrodes onto peripheral nerves in a rodent model allows for stimulation and recording of in vivo neural activities with excellent biocompatibility. These innovations provide viable paths to next-generation 3D biointegrated electronic systems for life science studies and medical applications.


Assuntos
Eletrônica , Água , Eletrodos , Nervos Periféricos , Fenômenos Eletrofisiológicos
14.
Nano Lett ; 23(21): 9704-9710, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37870505

RESUMO

Quantum spins, also known as spin operators that preserve SU(2) symmetry, lack a specific orientation in space and are hypothesized to display unique interactions with superconductivity. However, spin-orbit coupling and crystal field typically cause a significant magnetic anisotropy in d/f shell spins on surfaces. Here, we fabricate atomically precise S = 1/2 magnetic nanographenes on Pb(111) through engineering sublattice imbalance in the graphene honeycomb lattice. Through tuning the magnetic exchange strength between the unpaired spin and Cooper pairs, a quantum phase transition from the singlet to the doublet state has been observed, consistent with the quantum spin models. From our calculations, the particle-hole asymmetry is induced by the Coulomb scattering potential and gives a transition point about kBTk ≈ 1.6Δ. Our work demonstrates that delocalized π electron magnetism hosts highly tunable magnetic bound states, which can be further developed to study the Majorana bound states and other rich quantum phases of low-dimensional quantum spins on superconductors.

15.
Angew Chem Int Ed Engl ; 63(11): e202318142, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38265124

RESUMO

Precisely introducing topological defects is an important strategy in nanographene crystal engineering because defects can tune π-electronic structures and control molecular assemblies. The synergistic control of the synthesis and assembly of nanographenes by embedding the topological defects to afford two-dimensional (2D) crystals on surfaces is still a great challenge. By in-situ embedding ladder bipyrazinylene (LBPy) into acene, the narrowest nanographene with zigzag edges, we have achieved the precise preparation of 2D nonbenzenoid heteroacene crystals on Au(111). Through intramolecular electrocyclization of o-diisocyanides and Au adatom-directed [2+2] cycloaddition, the nonbenzenoid heteroacene products are produced with high chemoselectivity, and lead to the molecular 2D assembly via LBPy-derived interlocking hydrogen bonds. Using bond-resolved scanning tunneling microscopy, we determined the atomic structures of the nonbenzenoid heteroacene product and diverse organometallic intermediates. The tunneling spectroscopy measurements revealed the electronic structure of the nonbenzenoid heteroacene, which is supported by density functional theory (DFT) calculations. The observed distinct organometallic intermediates during progression annealing combined with DFT calculations demonstrated that LBPy formation proceeds via electrocyclization of o-diisocyanides, trapping of heteroarynes by Au adatoms, and stepwise elimination of Au adatoms.

16.
J Am Chem Soc ; 145(24): 13048-13058, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289993

RESUMO

Two-dimensional (2D) crystal-to-crystal transition is an important method in crystal engineering because of its ability to directly create diverse crystal materials from one crystal. However, steering a 2D single-layer crystal-to-crystal transition on surfaces with high chemo- and stereoselectivity under ultra-high vacuum conditions is a great challenge because the transition is a complex dynamic process. Here, we report a highly chemoselective 2D crystal transition from radialene to cumulene with retention of stereoselectivity on Ag(111) via retro-[2 + 1] cycloaddition of three-membered carbon rings and directly visualize the transition process involving a stepwise epitaxial growth mechanism by the combination of scanning tunneling microscopy and non-contact atomic force microscopy. Using progression annealing, we found that isocyanides on Ag(111) at a low annealing temperature underwent sequential [1 + 1 + 1] cycloaddition and enantioselective molecular recognition based on C-H···Cl hydrogen bonding interactions to form 2D triaza[3]radialene crystals. In contrast, a higher annealing temperature induced the transformation of triaza[3]radialenes to generate trans-diaza[3]cumulenes, which were further assembled into 2D cumulene-based crystals through twofold N-Ag-N coordination and C-H···Cl hydrogen bonding interactions. By combining the observed distinct transient intermediates and density functional theory calculations, we demonstrate that the retro-[2 + 1] cycloaddition reaction proceeds via the ring opening of a three-membered carbon ring, sequential dechlorination/hydrogen passivation, and deisocyanation. Our findings provide new insights into the growth mechanism and dynamics of 2D crystals and have implications for controllable crystal engineering.

17.
J Am Chem Soc ; 145(13): 7136-7146, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951172

RESUMO

The emergence of quantum magnetism in nanographenes provides ample opportunities to fabricate purely organic devices for spintronics and quantum information. Although heteroatom doping is a viable way to engineer the electronic properties of nanographenes, the synthesis of doped nanographenes with collective quantum magnetism remains elusive. Here, a set of nitrogen-doped nanographenes (N-NGs) with atomic precision are fabricated on Au(111) through a combination of imidazole [2+2+2]-cyclotrimerization and cyclodehydrogenation reactions. High-resolution scanning probe microscopy measurements reveal the presence of collective quantum magnetism for nanographenes with three radicals, with spectroscopic features which cannot be captured by mean-field density functional theory calculations but can be well reproduced by Heisenberg spin model calculations. In addition, the mechanism of magnetic exchange interaction of N-NGs has been revealed and compared with their counterparts with pure hydrocarbons. Our findings demonstrate the bottom-up synthesis of atomically precise N-NGs which can be utilized to fabricate low-dimensional extended graphene nanostructures for realizing ordered quantum phases.

18.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36472530

RESUMO

The recurrent evolution of resistance to cardiotonic steroids (CTS) across diverse animals most frequently involves convergent amino acid substitutions in the H1-H2 extracellular loop of Na+,K+-ATPase (NKA). Previous work revealed that hystricognath rodents (e.g., chinchilla) and pterocliform birds (sandgrouse) have convergently evolved amino acid insertions in the H1-H2 loop, but their functional significance was not known. Using protein engineering, we show that these insertions have distinct effects on CTS resistance in homologs of each of the two species that strongly depend on intramolecular interactions with other residues. Removing the insertion in the chinchilla NKA unexpectedly increases CTS resistance and decreases NKA activity. In the sandgrouse NKA, the amino acid insertion and substitution Q111R both contribute to an augmented CTS resistance without compromising ATPase activity levels. Molecular docking simulations provide additional insight into the biophysical mechanisms responsible for the context-specific mutational effects on CTS insensitivity of the enzyme. Our results highlight the diversity of genetic substrates that underlie CTS insensitivity in vertebrate NKA and reveal how amino acid insertions can alter the phenotypic effects of point mutations at key sites in the same protein domain.


Assuntos
Glicosídeos Cardíacos , ATPase Trocadora de Sódio-Potássio , Animais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Aminoácidos/genética , Simulação de Acoplamento Molecular , Chinchila/metabolismo , Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/farmacologia , Vertebrados/genética , Vertebrados/metabolismo
19.
BMC Plant Biol ; 23(1): 402, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620775

RESUMO

BACKGROUND: Betalain is a natural pigment with important nutritional value and broad application prospects. Previously, we produced betanin biosynthesis transgenic carrots via expressing optimized genes CYP76AD1S, cDOPA5GTS and DODA1S. Betanin can accumulate throughout the whole transgenic carrots. But the effects of betanin accumulation on the metabolism of transgenic plants and whether it produces unexpected effects are still unclear. RESULTS: The accumulation of betanin in leaves can significantly improve its antioxidant capacity and induce a decrease of chlorophyll content. Transcriptome and metabolomics analysis showed that 14.0% of genes and 33.1% of metabolites were significantly different, and metabolic pathways related to photosynthesis and tyrosine metabolism were markedly altered. Combined analysis showed that phenylpropane biosynthesis pathway significantly enriched the differentially expressed genes and significantly altered metabolites. CONCLUSIONS: Results showed that the metabolic status was significantly altered between transgenic and non-transgenic carrots, especially the photosynthesis and tyrosine metabolism. The extra consumption of tyrosine and accumulation of betanin might be the leading causes.


Assuntos
Daucus carota , Daucus carota/genética , Betacianinas , Fotossíntese/genética , Tirosina
20.
Small ; 19(32): e2300968, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066734

RESUMO

Quantitative thermal performance measurements and thermal management at the micro-/nano scale are becoming increasingly important as the size of electronic components shrinks. Scanning thermal microscopy (SThM) is an emerging method with high spatial resolution that accurately reflects changes in local thermal signals based on a thermally sensitive probe. However, because of the unclear thermal resistance at the probe-sample interface, quantitative characterization of thermal conductivity for different kinds of materials still remains limited. In this paper, the heat transfer process considering the thermal contact resistance between the probe and sample surface is analyzed using finite element simulation and thermal resistance network model. On this basis, a mathematical empirical function is developed applicable to a variety of material systems, which depicts the relationship between the thermal conductivity of the sample and the probe temperature. The proposed model is verified by measuring ten materials with a wide thermal conductivity range, and then further validated by two materials with unknown thermal conductivity. In conclusion, this work provides the prospect of achieving quantitative characterization of thermal conductivity over a wide range and further enables the mapping of local thermal conductivity to microstructures or phases of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA