Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29203547

RESUMO

Cryptococcus neoformans is a common environmental yeast and opportunistic pathogen responsible for 15% of AIDS-related deaths worldwide. Mortality primarily results from meningoencephalitis, which occurs when fungal cells disseminate to the brain from the initial pulmonary infection site. A key C. neoformans virulence trait is the polysaccharide capsule. Capsule shields C. neoformans from immune-mediated recognition and destruction. The main capsule component, glucuronoxylomannan (GXM), is found both attached to the cell surface and free in the extracellular space (as exo-GXM). Exo-GXM accumulates in patient serum and cerebrospinal fluid at microgram/milliliter concentrations, has well-documented immunosuppressive properties, and correlates with poor patient outcomes. However, it is poorly understood whether exo-GXM release is regulated or the result of shedding during normal capsule turnover. We demonstrate that exo-GXM release is regulated by environmental cues and inversely correlates with surface capsule levels. We identified genes specifically involved in exo-GXM release that do not alter surface capsule thickness. The first mutant, the liv7Δ strain, released less GXM than wild-type cells when capsule was not induced. The second mutant, the cnag_00658Δ strain, released more exo-GXM under capsule-inducing conditions. Exo-GXM release observed in vitro correlated with polystyrene adherence, virulence, and fungal burden during murine infection. Additionally, we found that exo-GXM reduced cell size and capsule thickness under capsule-inducing conditions, potentially influencing dissemination. Finally, we demonstrated that exo-GXM prevents immune cell infiltration into the brain during disseminated infection and highly inflammatory intracranial infection. Our data suggest that exo-GXM performs a distinct role from capsule GXM during infection, altering cell size and suppressing inflammation.


Assuntos
Sistema Nervoso Central/citologia , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Polissacarídeos Fúngicos/farmacologia , Animais , Sistema Nervoso Central/imunologia , Criptococose/patologia , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/metabolismo , Feminino , Polissacarídeos Fúngicos/genética , Polissacarídeos Fúngicos/metabolismo , Pneumopatias Fúngicas/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Virulência
2.
Cell Host Microbe ; 30(10): 1382-1400.e8, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099922

RESUMO

Environmental pathogens move from ecological niches to mammalian hosts, requiring adaptation to dramatically different environments. Microbes that disseminate farther, including the fungal meningitis pathogen Cryptococcus neoformans, require additional adaptation to diverse tissues. We demonstrate that the formation of a small C. neoformans morphotype-called "seed" cells due to their colonizing ability-is critical for extrapulmonary organ entry. Seed cells exhibit changes in fungal cell size and surface expression that result in an enhanced macrophage update. Seed cell formation is triggered by environmental factors, including C. neoformans' environmental niche, and pigeon guano with phosphate plays a central role. Seed cells show the enhanced expression of phosphate acquisition genes, and mutants unable to acquire phosphate fail to adopt the seed cell morphotype. Additionally, phosphate can be released by tissue damage, potentially establishing a feed-forward loop of seed cell formation and dissemination. Thus, C. neoformans' size variation represent inducible morphotypes that change host interactions to facilitate microbe spread.


Assuntos
Criptococose , Cryptococcus neoformans , Adaptação Fisiológica , Animais , Columbidae , Criptococose/microbiologia , Cryptococcus neoformans/genética , Mamíferos , Fosfatos/metabolismo
3.
Elife ; 92020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32367801

RESUMO

Invasive fungal infections cause 1.6 million deaths annually, primarily in immunocompromised individuals. Mortality rates are as high as 90% due to limited treatments. The azole class antifungal, fluconazole, is widely available and has multi-species activity but only inhibits growth instead of killing fungal cells, necessitating long treatments. To improve treatment, we used our novel high-throughput method, the overlap2 method (O2M) to identify drugs that interact with fluconazole, either increasing or decreasing efficacy. We identified 40 molecules that act synergistically (amplify activity) and 19 molecules that act antagonistically (decrease efficacy) when combined with fluconazole. We found that critical frontline beta-lactam antibiotics antagonize fluconazole activity. A promising fluconazole-synergizing anticholinergic drug, dicyclomine, increases fungal cell permeability and inhibits nutrient intake when combined with fluconazole. In vivo, this combination doubled the time-to-endpoint of mice with Cryptococcus neoformans meningitis. Thus, our ability to rapidly identify synergistic and antagonistic drug interactions can potentially alter the patient outcomes.


Individuals with weakened immune systems ­ such as recipients of organ transplants ­ can fall prey to illnesses caused by fungi that are harmless to most people. These infections are difficult to manage because few treatments exist to fight fungi, and many have severe side effects. Antifungal drugs usually slow the growth of fungi cells rather than kill them, which means that patients must remain under treatment for a long time, or even for life. One way to boost efficiency and combat resistant infections is to combine antifungal treatments with drugs that work in complementary ways: the drugs strengthen each other's actions, and together they can potentially kill the fungus rather than slow its progression. However, not all drug combinations are helpful. In fact, certain drugs may interact in ways that make treatment less effective. This is particularly concerning because people with weakened immune systems often take many types of medications. Here, Wambaugh et al. harnessed a new high-throughput system to screen how 2,000 drugs (many of which already approved to treat other conditions) affected the efficiency of a common antifungal called fluconazole. This highlighted 19 drugs that made fluconazole less effective, some being antibiotics routinely used to treat patients with weakened immune systems. On the other hand, 40 drugs boosted the efficiency of fluconazole, including dicyclomine, a compound currently used to treat inflammatory bowel syndrome. In fact, pairing dicyclomine and fluconazole more than doubled the survival rate of mice with severe fungal infections. The combined treatment could target many species of harmful fungi, even those that had become resistant to fluconazole alone. The results by Wambaugh et al. point towards better treatments for individuals with serious fungal infections. Drugs already in circulation for other conditions could be used to boost the efficiency of fluconazole, while antibiotics that do not decrease the efficiency of this medication should be selected to treat at-risk patients.


Assuntos
Antifúngicos/uso terapêutico , Antagonismo de Drogas , Sinergismo Farmacológico , Micoses/tratamento farmacológico , Animais , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Ensaios de Triagem em Larga Escala , Humanos , Meningite Criptocócica/tratamento farmacológico , Camundongos , Relação Estrutura-Atividade
4.
J Mol Biol ; 431(16): 2982-3009, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31078554

RESUMO

Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.


Assuntos
Fungos/patogenicidade , Micoses/imunologia , Infecções Oportunistas/imunologia , Fungos/classificação , Interações entre Hospedeiro e Microrganismos , Humanos , Evasão da Resposta Imune , Micoses/microbiologia , Infecções Oportunistas/microbiologia
5.
J Fungi (Basel) ; 4(1)2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29463005

RESUMO

Cryptococcus neoformans is a common environmental saprophyte and human fungal pathogen that primarily causes disease in immunocompromised individuals. Similar to many environmentally acquired human fungal pathogens, C. neoformans initiates infection in the lungs. However, the main driver of mortality is invasive cryptococcosis leading to fungal meningitis. After C. neoformans gains a foothold in the lungs, a critical early step in invasion is transversal of the respiratory epithelium. In this review, we summarize current knowledge relating to pulmonary escape. We focus on fungal factors that allow C. neoformans to disseminate from the lungs via intracellular and extracellular routes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA