Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mSystems ; : e0075324, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940524

RESUMO

Winter is a relatively under-studied season in freshwater ecology. The paucity of wintertime surveys has led to a lack of knowledge regarding microbial community activity during the winter in Lake Erie, a North American Great Lake. Viruses shape microbial communities and regulate biogeochemical cycles by acting as top-down controls, yet very few efforts have been made to examine active virus populations during the winter in Lake Erie. Furthermore, climate change-driven declines in seasonal ice cover have been shown to influence microbial community structure, but no studies have compared viral community activity between different ice cover conditions. We surveyed surface water metatranscriptomes for viral hallmark genes as a proxy for active virus populations and compared activity metrics between ice-covered and ice-free conditions from two sampled winters. Transcriptionally active viral communities were detected in both winters, spanning diverse phylogenetic clades of putative bacteriophage (Caudoviricetes), giant viruses (Nucleocytoviricota, or NCLDV), and RNA viruses (Orthornavirae). However, viral community activity metrics revealed pronounced differences between the ice-covered and ice-free winters. Viral community composition was distinct between winters and viral hallmark gene richness was reduced in the ice-covered relative to the ice-free conditions. In addition, the observed differences in viral communities correlated with microbial community activity metrics. Overall, these findings contribute to our understanding of the viral populations that are active during the winter in Lake Erie and suggest that viral community activity may be associated with ice cover extent.IMPORTANCEAs seasonal ice cover is projected to become increasingly rare on large temperate lakes, there is a need to understand how microbial communities might respond to changing ice conditions. Although it is widely recognized that viruses impact microbial community structure and function, there is little known regarding wintertime viral activity or the relationship between viral activity and ice cover extent. Our metatranscriptomic analyses indicated that viruses were transcriptionally active in the winter surface waters of Lake Erie. These findings also expanded the known diversity of viral lineages in the Great Lakes. Notably, viral community activity metrics were significantly different between the two sampled winters. The pronounced differences we observed in active viral communities between the ice-covered and ice-free samples merit further research regarding how viral communities will function in future, potentially ice-free, freshwater systems.

2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366077

RESUMO

The rediscovery of diatom blooms embedded within and beneath the Lake Erie ice cover (2007-2012) ignited interest in psychrophilic adaptations and winter limnology. Subsequent studies determined the vital role ice plays in winter diatom ecophysiology as diatoms partition to the underside of ice, thereby fixing their location within the photic zone. Yet, climate change has led to widespread ice decline across the Great Lakes, with Lake Erie presenting a nearly "ice-free" state in several recent winters. It has been hypothesized that the resultant turbid, isothermal water column induces light limitation amongst winter diatoms and thus serves as a competitive disadvantage. To investigate this hypothesis, we conducted a physiochemical and metatranscriptomic survey that spanned spatial, temporal, and climatic gradients of the winter Lake Erie water column (2019-2020). Our results suggest that ice-free conditions decreased planktonic diatom bloom magnitude and altered diatom community composition. Diatoms increased their expression of various photosynthetic genes and iron transporters, which suggests that the diatoms are attempting to increase their quantity of photosystems and light-harvesting components (a well-defined indicator of light limitation). We identified two gene families which serve to increase diatom fitness in the turbid ice-free water column: proton-pumping rhodopsins (a potential second means of light-driven energy acquisition) and fasciclins (a means to "raft" together to increase buoyancy and co-locate to the surface to optimize light acquisition). With large-scale climatic changes already underway, our observations provide insight into how diatoms respond to the dynamic ice conditions of today and shed light on how they will fare in a climatically altered tomorrow.


Assuntos
Diatomáceas , Diatomáceas/genética , Ecossistema , Camada de Gelo , Lagos , Água
3.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36828391

RESUMO

Climate change is affecting how energy and matter flow through ecosystems, thereby altering global carbon and nutrient cycles. Microorganisms play a fundamental role in carbon and nutrient cycling and are thus an integral link between ecosystems and climate. Here, we highlight a major black box hindering our ability to anticipate ecosystem climate responses: viral infections within complex microbial food webs. We show how understanding and predicting ecosystem responses to warming could be challenging-if not impossible-without accounting for the direct and indirect effects of viral infections on different microbes (bacteria, archaea, fungi, protists) that together perform diverse ecosystem functions. Importantly, understanding how rising temperatures associated with climate change influence viruses and virus-host dynamics is crucial to this task, yet is severely understudied. In this perspective, we (i) synthesize existing knowledge about virus-microbe-temperature interactions and (ii) identify important gaps to guide future investigations regarding how climate change might alter microbial food web effects on ecosystem functioning. To provide real-world context, we consider how these processes may operate in peatlands-globally significant carbon sinks that are threatened by climate change. We stress that understanding how warming affects biogeochemical cycles in any ecosystem hinges on disentangling complex interactions and temperature responses within microbial food webs.


Assuntos
Viroses , Vírus , Humanos , Ecossistema , Aquecimento Global , Mudança Climática , Carbono
4.
Microbiol Resour Announc ; 11(7): e0035122, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35652650

RESUMO

Previous reports suggest planktonic and under-ice winter microbial communities in Lake Erie are dominated by diatoms. Here, we report the assembled metatranscriptomes of 79 Lake Erie surface water microbial communities spanning both the winter (28 samples) and spring (51 samples) months over spatial, temporal, and climatic gradients in 2019 through 2020.

5.
Sci Rep ; 10(1): 15162, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938948

RESUMO

Gut microbiomes perform crucial roles in host health and development, but few studies have explored cetacean microbiomes especially deep divers. We characterized the gut microbiomes of stranded dwarf (Kogia sima) and pygmy (K. breviceps) sperm whales to examine the effects of phylogeny and life stage on microbiome composition and diversity. 16S rRNA gene sequence analysis revealed diverse gut communities (averaging 674 OTUs) dominated by a few symbiont taxa (25 OTUs accounted for 64% of total relative abundance). Both phylogeny and life stage shaped community composition and diversity, with species-specific microbiome differences present early in life. Further analysis showed evidence of microbiome convergence with host maturity, albeit through different processes: symbiont 'accumulation' in K. sima and 'winnowing' in K. breviceps, indicating different methods of community assembly during host development. Furthermore, culture-based analyses yielded 116 pure cultures matching 25 OTUs, including one isolate positive for chitin utilization. Our findings indicate that kogiid gut microbiomes are highly diverse and species-specific, undergo significant shifts with host development, and can be cultivated on specialized media under anaerobic conditions. These results enhance our understanding of the kogiid gut microbiome and may provide useful information for symbiont assessment in host health.


Assuntos
Microbioma Gastrointestinal , Baleias/microbiologia , Animais , Biodiversidade , Microbioma Gastrointestinal/genética , Interações entre Hospedeiro e Microrganismos , Estágios do Ciclo de Vida , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Simbiose , Baleias/classificação , Baleias/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA