RESUMO
Glycogen storage disease type Ia (GSDIa) is a rare, inherited glucose-6-phosphatase-α (G6Pase-α) deficiency-induced carbohydrate metabolism disorder. Although hyperlipidemia is a hallmark of GSDI, the extent of lipid metabolism disruption remains incompletely understood. Lipidomic analysis was performed to characterize the serum lipidome in patients with GSDIa, by including age- and sex-matched healthy controls and age-matched hypercholesterolemic controls. Metabolic control and dietary information biochemical markers were obtained from patients with GSDIa. Patients with GSDIa showed higher total serum lysophosphatidylcholine (Fold Change, (FC) 2.2, P < 0.0001), acyl-acyl-phosphatidylcholine (FC 2.1, P < 0.0001), and ceramide (FC 2.4, P < 0.0001) levels and bile acid (FC 0.7, P < 0.001), acylcarnitines (FC 0.7, P < 0.001), and cholesterol esters (FC 1.0, P < 0.001) than those of healthy controls, and higher di- (FC 1.1, P < 0.0001; FC 0.9, P < 0.01) and triacylglycerol (FC 6.3, P < 0.0001; FC 3.9, P < 0.01) levels than those of healthy controls and hypercholesterolemic subjects. Both total cholesterol and triglyceride values correlated with Cer (d16:1/22:0), Cer (d18:1/20:0), Cer (d18:1/20:0(OH)), Cer (d18:1/22:0), Cer (d18:1/23:0), Cer (d18:1/24:1), Cer (d18:2/22:0), Cer (d18:2/24:1). Total cholesterol also correlated with Cer (d18:1/24:0), Cer (d18:2/20:0), HexCer (d16:1/22:0), HexCer (d18:1/18:0), and Hex2Cer (d18:1/20:0). Triglyceridelevels correlated with Cer (d18:0/24:1). Alanine aminotransferase values correlated with Cer (d18:0/22:0), insulin with Cer (d18:1/22:1) and Cer (d18:1/24:1), and HDL with hexosylceramide (HexCer) (d18:2/23:0). These results expand on the currently known involvement of lipid metabolism in GSDIa. Circulating Cer may allow for refined dietary assessment compared with traditional biomarkers. Because specific lipid species are relatively easy to assess, they represent potential novel biomarkers of GSDIa.
RESUMO
BACKGROUND: Cohort data on continuous glucose monitoring (CGM) metrics are scarce for liver glycogen storage diseases (GSDs) and idiopathic ketotic hypoglycemia (IKH). The aim of this study was to retrospectively describe CGM metrics for people with liver GSDs and IKH. PATIENTS AND METHODS: CGM metrics (descriptive, glycemic variation and glycemic control parameters) were calculated for 47 liver GSD and 14 IKH patients, categorized in cohorts by disease subtype, age and treatment status, and compared to published age-matched CGM metrics from healthy individuals. Glycemic control was assessed as time-in-range (TIR; ≥3.9 - ≤7.8 and ≥3.9 - ≤10.0 mmol/L), time-below-range (TBR; <3.0 mmol/L and ≥3.0 - ≤3.9 mmol/L), and time-above-range (TAR; >7.8 and >10.0 mmol/L). RESULTS: Despite all patients receiving dietary treatment, GSD cohorts displayed significantly different CGM metrics compared to healthy individuals. Decreased TIR together with increased TAR were noted in GSD I, GSD III, and GSD XI (Fanconi-Bickel syndrome) cohorts (all p < 0.05). In addition, all GSD I cohorts showed increased TBR (all p < 0.05). In GSD IV an increased TBR (p < 0.05) and decreased TAR were noted (p < 0.05). In GSD IX only increased TAR was observed (p < 0.05). IKH patient cohorts, both with and without treatment, presented CGM metrics similar to healthy individuals. CONCLUSION: Despite dietary treatment, most liver GSD cohorts do not achieve CGM metrics comparable to healthy individuals. International recommendations on the use of CGM and clinical targets for CGM metrics in liver GSD patients are warranted, both for patient care and clinical trials.
Assuntos
Glicemia , Doença de Depósito de Glicogênio , Hipoglicemia , Humanos , Masculino , Feminino , Estudos Retrospectivos , Criança , Adulto , Adolescente , Glicemia/metabolismo , Pré-Escolar , Hipoglicemia/sangue , Hipoglicemia/diagnóstico , Adulto Jovem , Pessoa de Meia-Idade , Automonitorização da Glicemia , Lactente , Fígado/metabolismo , Fígado/patologia , Monitoramento Contínuo da GlicoseRESUMO
Glycogen storage disease type Ib (GSD Ib, biallelic variants in SLC37A4) is a rare disorder of glycogen metabolism complicated by neutropenia/neutrophil dysfunction. Since 2019, the SGLT2-inhibitor empagliflozin has provided a mechanism-based treatment option for the symptoms caused by neutropenia/neutrophil dysfunction (e.g. mucosal lesions, inflammatory bowel disease). Because of the rarity of GSD Ib, the published evidence on safety and efficacy of empagliflozin is still limited and does not allow to develop evidence-based guidelines. Here, an international group of experts provides 14 best practice consensus treatment recommendations based on expert practice and review of the published evidence. We recommend to start empagliflozin in all GSD Ib individuals with clinical or laboratory signs related to neutropenia/neutrophil dysfunction with a dose of 0.3-0.4 mg/kg/d given as a single dose in the morning. Treatment can be started in an outpatient setting. The dose should be adapted to the weight and in case of inadequate clinical treatment response or side effects. We strongly recommend to pause empagliflozin immediately in case of threatening dehydration and before planned longer surgeries. Discontinuation of G-CSF therapy should be attempted in all individuals. If available, 1,5-AG should be monitored. Individuals who have previously not tolerated starches should be encouraged to make a new attempt to introduce starch in their diet after initiation of empagliflozin treatment. We advise to monitor certain safety and efficacy parameters and recommend continuous, alternatively frequent glucose measurements during the introduction of empagliflozin. We provide specific recommendations for special circumstances like pregnancy and liver transplantation.
Assuntos
Compostos Benzidrílicos , Glucosídeos , Doença de Depósito de Glicogênio Tipo I , Neutropenia , Humanos , Neutrófilos/metabolismo , Consenso , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo I/genética , Neutropenia/tratamento farmacológico , Neutropenia/etiologia , Proteínas de Transporte de Monossacarídeos , Antiporters/metabolismoRESUMO
Empagliflozin has been successfully repurposed for treating neutropenia and neutrophil dysfunction in patients with glycogen storage disease type 1b (GSD 1b), however, data in infants are missing. We report on efficacy and safety of empagliflozin in infants with GSD 1b. This is an international retrospective case series on 21 GSD 1b infants treated with empagliflozin (total treatment time 20.6 years). Before starting empagliflozin (at a median age of 8.1 months with a median dose of 0.3 mg/kg/day) 12 patients had clinical signs and symptoms of neutrophil dysfunction. Six of these previously symptomatic patients had no further neutropenia/neutrophil dysfunction-associated findings on empagliflozin. Eight patients had no signs and symptoms of neutropenia/neutrophil dysfunction before start and during empagliflozin treatment. One previously asymptomatic individual with a horseshoe kidney developed a central line infection with pyelonephritis and urosepsis during empagliflozin treatment. Of the 10 patients who were treated with G-CSF before starting empagliflozin, this was stopped in four and decreased in another four. Eleven individuals were never treated with G-CSF. While in 17 patients glucose homeostasis remained stable on empagliflozin, four showed glucose homeostasis instability in the introductory phase. In 17 patients, no other side effects were reported, while genital (n = 2) or oral (n = 1) candidiasis and skin infection (n = 1) were reported in the remaining four. Empagliflozin had a good effect on neutropenia/neutrophil dysfunction-related signs and symptoms and a favourable safety profile in infants with GSD 1b and therefore qualifies for further exploration as first line treatment.
Assuntos
Compostos Benzidrílicos , Glucosídeos , Doença de Depósito de Glicogênio Tipo I , Neutropenia , Neutrófilos , Humanos , Doença de Depósito de Glicogênio Tipo I/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo I/complicações , Neutropenia/tratamento farmacológico , Masculino , Feminino , Lactente , Compostos Benzidrílicos/uso terapêutico , Compostos Benzidrílicos/administração & dosagem , Estudos Retrospectivos , Neutrófilos/efeitos dos fármacos , Glucosídeos/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/administração & dosagem , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Resultado do Tratamento , Fator Estimulador de Colônias de Granulócitos/uso terapêuticoRESUMO
Hepatic glycogen storage diseases constitute a group of disorders due to defects in the enzymes and transporters involved in glycogen breakdown and synthesis in the liver. Although hypoglycemia and hepatomegaly are the primary manifestations of (most of) hepatic GSDs, involvement of the endocrine system has been reported at multiple levels in individuals with hepatic GSDs. While some endocrine abnormalities (e.g., hypothalamicpituitary axis dysfunction in GSD I) can be direct consequence of the genetic defect itself, others (e.g., osteopenia in GSD Ib, insulin-resistance in GSD I and GSD III) may be triggered by the (dietary/medical) treatment. Being aware of the endocrine abnormalities occurring in hepatic GSDs is essential (1) to provide optimized medical care to this group of individuals and (2) to drive research aiming at understanding the disease pathophysiology. In this review, a thorough description of the endocrine manifestations in individuals with hepatic GSDs is presented, including pathophysiological and clinical implications.
Assuntos
Doença de Depósito de Glicogênio , Humanos , Doença de Depósito de Glicogênio/metabolismo , Doença de Depósito de Glicogênio/fisiopatologia , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia , Hepatopatias/etiologia , Doenças do Sistema Endócrino/metabolismo , Doenças do Sistema Endócrino/fisiopatologia , Fígado/metabolismo , Fígado/fisiopatologiaRESUMO
Renal proximal tubulopathy in Fanconi-Bickel syndrome is caused by impaired basolateral glucose transport via GLUT2 and consequently, intracellular accumulation of glucose and glycogen. SGLT2 inhibitors act on apical glucose reabsorption of renal proximal tubular cells. The purpose of this study was to retrospectively describe the first experiences with repurposing the SGLT2 inhibitor empagliflozin to treat the generalized tubulopathy in Fanconi-Bickel syndrome. A case series was conducted of seven persons from five families (five males, two females; three children, who were 14y5m, 2y9m, and 1y6m old) with genetically confirmed Fanconi-Bickel syndrome, off-label treated with empagliflozin. Median (range) age at start of empagliflozin was 27 years (1y6m - 61y) and duration of follow-up under empagliflozin treatment was 169 days (57-344). Under empagliflozin (up to 25 mg/d), biochemical parameters of tubular cell integrity (urinary N-acetyl-glucosaminidase) and/or tubular functions (including urinary α1-microglobulin) improved in all persons with Fanconi-Bickel syndrome, albeit to varying degrees. Clinically, supplementations (i.e., phosphate, alkali, carnitine, and alfacalcidol) could be completely discontinued in the three children, whereas results in the four adult patients were more variable and not as significant. Empagliflozin was well-tolerated and no symptomatic hypoglycemia was observed. In conclusion, SGLT2 inhibitors such as empagliflozin shift the metabolic block in Fanconi-Bickel syndrome, that is, they intervene specifically in the underlying pathophysiology and can thus attenuate renal proximal tubulopathy, especially when started in early childhood.
RESUMO
Off-label repurposing of empagliflozin allows pathomechanism-based treatment of neutropenia/neutrophil-dysfunction in glycogen storage disease type Ib (GSDIb). From a value-based healthcare (VBHC) perspective, we here retrospectively studied patient-reported, clinical and pharmacoeconomic outcomes in 11 GSDIb individuals before and under empagliflozin at two centers (the Netherlands [NL], Austria [AT]), including a budget impact analysis, sensitivity-analysis, and systematic benefit-risk assessment. Under empagliflozin, all GSDIb individuals reported improved quality-of-life-scores. Neutrophil dysfunction related symptoms allowed either granulocyte colony-stimulating factor cessation or tapering. Calculated cost savings per patient per year ranged between 6482-14 190 (NL) and 1281-41 231 (AT). The budget impact analysis estimated annual total cost savings ranging between 75 062-225 716 (NL) and 37 697-231 790 (AT), based on conservative assumptions. The systematic benefit-risk assessment was favorable. From a VBHC perspective, empagliflozin treatment in GSDIb improved personal and clinical outcomes while saving costs, thereby creating value at multiple pillars. We emphasize the importance to reimburse empagliflozin for GSDIb individuals, further supported by the favorable systematic benefit-risk assessment. These observations in similar directions in two countries/health care systems strongly suggest that our findings can be extrapolated to other geographical areas and health care systems.
Assuntos
Compostos Benzidrílicos , Glucosídeos , Doença de Depósito de Glicogênio Tipo I , Cuidados de Saúde Baseados em Valores , Humanos , Estudos Retrospectivos , Medição de RiscoRESUMO
The urinary metabolite tetraglucoside (Glc4) is a potential biomarker for hepatic glycogen storage diseases (GSDs). Glc4 is believed to reflect body glycogen content and/or turnover. However, dietary polysaccharide intake may influence Glc4 excretion, potentially limiting the utility of Glc4 as a monitoring biomarker in hepatic GSDs. We aimed to investigate the association of dietary polysaccharide intake with Glc4 excretion. Urinary Glc4 excretion (mmol/mmol creatinine and mmol/24 h) was analyzed using a validated LC-MS/MS method. Data was analyzed from 65 kidney transplant recipients and 58 healthy kidney donors in the TransplantLines cohort study. Spearman's correlation and multivariable linear regression analyses were performed. In the multivariable analysis, dry lean body mass (DLBM), dietary polysaccharide intake, transplantation status, age, sex, and glycated hemoglobin (HbA1c) served as independent variables. Daily variation was examined in 21 healthy individuals of urinary Glc4 excretion in 2-h collections over a 24-h period. Mixed generalized additive models were built to study the association of prior polysaccharide intake with Glc4 excretion. No (univariate) associations were found between polysaccharide intake and Glc4 excretion. However, a significant interaction between DLBM and polysaccharide on 24 h Glc4 excretion was observed in the multivariate analysis. Glc4 excretion throughout the day exhibited no relationship to prior polysaccharide intake. Our findings suggest an indirect effect of polysaccharide intake on Glc4 excretion, potentially due to changes in muscle glycogen content and/or turnover. We have found no evidence that dietary polysaccharides under normal intakes increase urinary Glc4 directly.
RESUMO
BACKGROUND: Monogenetic inborn errors of metabolism cause a wide phenotypic heterogeneity that may even differ between family members carrying the same genetic variant. Computational modelling of metabolic networks may identify putative sources of this inter-patient heterogeneity. Here, we mainly focus on medium-chain acyl-CoA dehydrogenase deficiency (MCADD), the most common inborn error of the mitochondrial fatty acid oxidation (mFAO). It is an enigma why some MCADD patients-if untreated-are at risk to develop severe metabolic decompensations, whereas others remain asymptomatic throughout life. We hypothesised that an ability to maintain an increased free mitochondrial CoA (CoASH) and pathway flux might distinguish asymptomatic from symptomatic patients. RESULTS: We built and experimentally validated, for the first time, a kinetic model of the human liver mFAO. Metabolites were partitioned according to their water solubility between the bulk aqueous matrix and the inner membrane. Enzymes are also either membrane-bound or in the matrix. This metabolite partitioning is a novel model attribute and improved predictions. MCADD substantially reduced pathway flux and CoASH, the latter due to the sequestration of CoA as medium-chain acyl-CoA esters. Analysis of urine from MCADD patients obtained during a metabolic decompensation showed an accumulation of medium- and short-chain acylcarnitines, just like the acyl-CoA pool in the MCADD model. The model suggested some rescues that increased flux and CoASH, notably increasing short-chain acyl-CoA dehydrogenase (SCAD) levels. Proteome analysis of MCADD patient-derived fibroblasts indeed revealed elevated levels of SCAD in a patient with a clinically asymptomatic state. This is a rescue for MCADD that has not been explored before. Personalised models based on these proteomics data confirmed an increased pathway flux and CoASH in the model of an asymptomatic patient compared to those of symptomatic MCADD patients. CONCLUSIONS: We present a detailed, validated kinetic model of mFAO in human liver, with solubility-dependent metabolite partitioning. Personalised modelling of individual patients provides a novel explanation for phenotypic heterogeneity among MCADD patients. Further development of personalised metabolic models is a promising direction to improve individualised risk assessment, management and monitoring for inborn errors of metabolism.
Assuntos
Erros Inatos do Metabolismo Lipídico , Metabolismo dos Lipídeos , Humanos , Acil-CoA Desidrogenase/genética , Coenzima A , Erros Inatos do Metabolismo Lipídico/genéticaRESUMO
Glycogen storage disease type 1a (GSD Ia) is an inborn error of metabolism caused by mutations in the G6PC gene, encoding the catalytic subunit of glucose-6-phosphatase. Early symptoms include severe fasting intolerance, failure to thrive and hepatomegaly, biochemically associated with nonketotic hypoglycemia, fasting hyperlactidemia, hyperuricemia and hyperlipidemia. Dietary management is the cornerstone of treatment aiming at maintaining euglycemia, prevention of secondary metabolic perturbations and long-term complications, including liver (hepatocellular adenomas and carcinomas), kidney and bone disease (hypovitaminosis D and osteoporosis). As impaired vitamin A homeostasis also associates with similar symptoms and is coordinated by the liver, we here analysed whether vitamin A metabolism is affected in GSD Ia patients and liver-specific G6pc-/- knock-out mice. Serum levels of retinol and retinol binding protein 4 (RBP4) were significantly increased in both GSD Ia patients and L-G6pc-/- mice. In contrast, hepatic retinol levels were significantly reduced in L-G6pc-/- mice, while hepatic retinyl palmitate (vitamin A storage form) and RBP4 levels were not altered. Transcript and protein analyses indicate an enhanced production of retinol and reduced conversion the retinoic acids (unchanged LRAT, Pnpla2/ATGL and Pnpla3 up, Cyp26a1 down) in L-G6pc-/- mice. Aberrant expression of genes involved in vitamin A metabolism was associated with reduced basal messenger RNA levels of markers of inflammation (Cd68, Tnfα, Nos2, Il-6) and fibrosis (Col1a1, Acta2, Tgfß, Timp1) in livers of L-G6pc-/- mice. In conclusion, GSD Ia is associated with elevated serum retinol and RBP4 levels, which may contribute to disease symptoms, including osteoporosis and hepatic steatosis.
Assuntos
Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/metabolismo , Fígado/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Vitamina A/sangue , Adolescente , Adulto , Animais , Diterpenos/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/sangue , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Osteoporose/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Ésteres de Retinil , Vitamina A/análogos & derivados , Vitamina A/metabolismoRESUMO
PURPOSE: This paper aims to report collective information on safety and efficacy of empagliflozin drug repurposing in individuals with glycogen storage disease type Ib (GSD Ib). METHODS: This is an international retrospective questionnaire study on the safety and efficacy of empagliflozin use for management of neutropenia/neutrophil dysfunction in patients with GSD Ib, conducted among the respective health care providers from 24 countries across the globe. RESULTS: Clinical data from 112 individuals with GSD Ib were evaluated, representing a total of 94 treatment years. The median age at start of empagliflozin treatment was 10.5 years (range = 0-38 years). Empagliflozin showed positive effects on all neutrophil dysfunction-related symptoms, including oral and urogenital mucosal lesions, recurrent infections, skin abscesses, inflammatory bowel disease, and anemia. Before initiating empagliflozin, most patients with GSD Ib were on G-CSF (94/112; 84%). At the time of the survey, 49 of 89 (55%) patients previously treated with G-CSF had completely stopped G-CSF, and another 15 (17%) were able to reduce the dose. The most common adverse event during empagliflozin treatment was hypoglycemia, occurring in 18% of individuals. CONCLUSION: Empagliflozin has a favorable effect on neutropenia/neutrophil dysfunction-related symptoms and safety profile in individuals with GSD Ib.
Assuntos
Doença de Depósito de Glicogênio Tipo I , Neutropenia , Adolescente , Adulto , Compostos Benzidrílicos , Criança , Pré-Escolar , Glucosídeos , Doença de Depósito de Glicogênio Tipo I/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo I/patologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Lactente , Recém-Nascido , Neutropenia/tratamento farmacológico , Estudos Retrospectivos , Inquéritos e Questionários , Adulto JovemRESUMO
BACKGROUND AND AIMS: Patients with glycogen storage disease type 1a (GSD-1a) primarily present with life-threatening hypoglycemia and display severe liver disease characterized by hepatomegaly. Despite strict dietary management, long-term complications still occur, such as liver tumor development. Variations in residual glucose-6-phosphatase (G6PC1) activity likely contribute to phenotypic heterogeneity in biochemical symptoms and complications between patients. However, lack of insight into the relationship between G6PC1 activity and symptoms/complications and poor understanding of the underlying disease mechanisms pose major challenges to provide optimal health care and quality of life for GSD-1a patients. Currently available GSD-1a animal models are not suitable to systematically investigate the relationship between hepatic G6PC activity and phenotypic heterogeneity or the contribution of gene-gene interactions (GGIs) in the liver. APPROACH AND RESULTS: To meet these needs, we generated and characterized a hepatocyte-specific GSD-1a mouse model using somatic CRISPR/CRISPR-associated protein 9 (Cas9)-mediated gene editing. Hepatic G6pc editing reduced hepatic G6PC activity up to 98% and resulted in failure to thrive, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly, hepatic steatosis (HS), and increased liver tumor incidence. This approach was furthermore successful in simultaneously modulating hepatic G6PC and carbohydrate response element-binding protein, a transcription factor that is activated in GSD-1a and protects against HS under these conditions. Importantly, it also allowed for the modeling of a spectrum of GSD-1a phenotypes in terms of hepatic G6PC activity, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly and HS. CONCLUSIONS: In conclusion, we show that somatic CRISPR/Cas9-mediated gene editing allows for the modeling of a spectrum of hepatocyte-borne GSD-1a disease symptoms in mice and to efficiently study GGIs in the liver. This approach opens perspectives for translational research and will likely contribute to personalized treatments for GSD-1a and other genetic liver diseases.
Assuntos
Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Animais de Doenças , Edição de Genes/métodos , Heterogeneidade Genética , Doença de Depósito de Glicogênio Tipo I/genética , Fenótipo , Animais , Vetores Genéticos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Neutropenia and neutrophil dysfunction cause serious infections and inflammatory bowel disease in glycogen storage disease type Ib (GSD-Ib). Our discovery that accumulating 1,5-anhydroglucitol-6-phosphate (1,5AG6P) caused neutropenia in a glucose-6-phosphatase 3 (G6PC3)-deficient mouse model and in 2 rare diseases (GSD-Ib and G6PC3 deficiency) led us to repurpose the widely used antidiabetic drug empagliflozin, an inhibitor of the renal glucose cotransporter sodium glucose cotransporter 2 (SGLT2). Off-label use of empagliflozin in 4 GSD-Ib patients with incomplete response to granulocyte colony-stimulating factor (GCSF) treatment decreased serum 1,5AG and neutrophil 1,5AG6P levels within 1 month. Clinically, symptoms of frequent infections, mucosal lesions, and inflammatory bowel disease resolved, and no symptomatic hypoglycemia was observed. GCSF could be discontinued in 2 patients and tapered by 57% and 81%, respectively, in the other 2. The fluctuating neutrophil numbers in all patients were increased and stabilized. We further demonstrated improved neutrophil function: normal oxidative burst (in 3 of 3 patients tested), corrected protein glycosylation (2 of 2), and normal neutrophil chemotaxis (1 of 1), and bactericidal activity (1 of 1) under treatment. In summary, the glucose-lowering SGLT2 inhibitor empagliflozin, used for type 2 diabetes, was successfully repurposed for treating neutropenia and neutrophil dysfunction in the rare inherited metabolic disorder GSD-Ib without causing symptomatic hypoglycemia. We ascribe this to an improvement in neutrophil function resulting from the reduction of the intracellular concentration of 1,5AG6P.
Assuntos
Compostos Benzidrílicos/uso terapêutico , Glucosídeos/uso terapêutico , Doença de Depósito de Glicogênio Tipo I/complicações , Hexosefosfatos/sangue , Neutropenia/tratamento farmacológico , Neutrófilos/patologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Compostos Benzidrílicos/efeitos adversos , Glicemia/análise , Quimiotaxia de Leucócito/efeitos dos fármacos , Pré-Escolar , Reposicionamento de Medicamentos , Resistência a Medicamentos , Feminino , Glucosídeos/efeitos adversos , Doença de Depósito de Glicogênio Tipo I/sangue , Doença de Depósito de Glicogênio Tipo I/imunologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Granulócitos/química , Humanos , Recém-Nascido , Proteína 2 de Membrana Associada ao Lisossomo/sangue , Masculino , Neutropenia/sangue , Uso Off-Label , Explosão Respiratória/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Adulto JovemRESUMO
Value-based healthcare (VBHC) intends to achieve better outcomes for patients, to improve quality of patient care, with reduced costs. Four dimensions define a model of intimately related value-pillars: personal value, allocative value, technical value, and societal value. VBHC is mostly applied in common diseases, and there are fundamental challenges in applying VBHC strategies to low volume, high complex healthcare situations, such as rare diseases, including inherited metabolic disorders. This article summarizes current practices at various academical domains (i.e., research, healthcare, education, and training) that (aim to) increase values at various value-pillars for persons with liver glycogen storage diseases or fatty acid oxidation disorders and their families. Future perspectives may include facilitating virtual networks to function as integrated practice units, improving measurement of outcomes, and creating information technology platforms to overcome the ethical, legal, societal, and technical challenges of data sharing for healthcare and research purposes.
Assuntos
Acidose , Doença de Depósito de Glicogênio , Erros Inatos do Metabolismo Lipídico , Doenças Musculares , Humanos , Atenção à Saúde/métodos , Ácidos Graxos , Doença de Depósito de Glicogênio/terapia , Erros Inatos do Metabolismo Lipídico/terapia , FígadoRESUMO
Our aim was to study the effect of secondary carnitine deficiency (SCD) and carnitine supplementation on important outcome measures for persons with medium-chain Acyl-CoA dehydrogenase deficiency (MCADD). We performed a large retrospective observational study using all recorded visits of persons with MCADD in the University Medical Center Groningen, the Netherlands, between October 1994 and October 2019. Frequency and duration of acute unscheduled preventive hospital visits, exercise tolerance, fatigue, and muscle pain were considered important clinical outcomes and were studied in relation to (acyl)carnitine profile and carnitine supplementation status. The study encompassed 1228 visits of 93 persons with MCADD. >60% had SCD during follow-up. This included only persons with severe MCADD. Carnitine supplementation and SCD were unrelated to the frequency and duration of the acute unscheduled preventive hospital visits (P > 0.05). The relative risk for fatigue, muscle ache, or exercise intolerance was equal between persons with and without SCD (RR 1.6, 95% CI 0.48-5.10, P = 0.4662). No episodes of metabolic crisis were recorded in non-carnitine-supplemented persons with MCADD and SCD. In some persons with MCADD, SCD resolved without carnitine supplementation. There is absence of real-world evidence in favor of routine carnitine analysis and carnitine supplementation in the follow-up of persons with MCADD.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Erros Inatos do Metabolismo Lipídico , Humanos , Acil-CoA Desidrogenase , Erros Inatos do Metabolismo Lipídico/metabolismo , Estudos RetrospectivosRESUMO
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is included in many newborn screening (NBS) programs. Acylcarnitine-based NBS for LCHADD not only identifies LCHADD, but also the other deficiencies of the mitochondrial trifunctional protein (MTP), a multi-enzyme complex involved in long-chain fatty acid ß-oxidation. Besides LCHAD, MTP harbors two additional enzyme activities: long-chain enoyl-CoA hydratase (LCEH) and long-chain ketoacyl-CoA thiolase (LCKAT). Deficiency of one or more MTP activities causes generalized MTP deficiency (MTPD), LCHADD, LCEH deficiency (not yet reported), or LCKAT deficiency (LCKATD). To gain insight in the outcomes of MTP-deficient patients diagnosed after the introduction of NBS for LCHADD in the Netherlands, a retrospective evaluation of genetic, biochemical, and clinical characteristics of MTP-deficient patients, identified since 2007, was carried out. Thirteen patients were identified: seven with LCHADD, five with MTPD, and one with LCKATD. All LCHADD patients (one missed by NBS, clinical diagnosis) and one MTPD patient (clinical diagnosis) were alive. Four MTPD patients and one LCKATD patient developed cardiomyopathy and died within 1 month and 13 months of life, respectively. Surviving patients did not develop symptomatic hypoglycemia, but experienced reversible cardiomyopathy and rhabdomyolysis. Five LCHADD patients developed subclinical neuropathy and/or retinopathy. In conclusion, patient outcomes were highly variable, stressing the need for accurate classification of and discrimination between the MTP deficiencies to improve insight in the yield of NBS for LCHADD. NBS allowed the prevention of symptomatic hypoglycemia, but current treatment options failed to treat cardiomyopathy and prevent long-term complications. Moreover, milder patients, who might benefit from NBS, were missed due to normal acylcarnitine profiles.
Assuntos
Cardiomiopatias , Hipoglicemia , Erros Inatos do Metabolismo Lipídico , Rabdomiólise , 3-Hidroxiacil-CoA Desidrogenases , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Biologia Molecular , Triagem Neonatal , Doenças do Sistema Nervoso , Países Baixos , Estudos Retrospectivos , Rabdomiólise/diagnóstico , Rabdomiólise/genéticaRESUMO
Continuous glucose monitoring (CGM) systems have great potential for real-time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in-depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is a retrospective in-depth analysis of CGM parameters, acquired in a continuous, real-time fashion describing glucose management in 15 individual GSD patients. CGM subsets are obtained both in-hospital and at home, upon nocturnal dietary intervention (n = 1), starch loads (n = 11) and treatment of GSD Ib patients with empagliflozin (n = 3). Descriptive CGM parameters, and parameters reflecting glycemic variation and glycemic control are considered useful CGM outcome parameters. Furthermore, the combination of first and second order derivatives, cumulative sum and Fourier analysis identified both subtle and sudden changes in glucose management; hence, aiding assessment of dietary and medical interventions. CGM data interpolation for nocturnal intervals reduced confounding by physical activity and diet. Based on these analyses, we conclude that in-depth CGM analysis can be a powerful tool to assess glucose management and optimize treatment in individual hepatic GSD patients.
Assuntos
Glicemia , Doença de Depósito de Glicogênio , Adolescente , Automonitorização da Glicemia , Criança , Pré-Escolar , Conjuntos de Dados como Assunto , Feminino , Glucose , Humanos , Masculino , Análise de Regressão , Estudos Retrospectivos , Adulto JovemRESUMO
Patients with inborn errors of metabolism causing fasting intolerance can experience acute metabolic decompensations. Long-term data on outcomes using emergency letters are lacking. This is a retrospective, observational, single-center study of the use of emergency letters based on a generic emergency protocol in patients with hepatic glycogen storage diseases (GSD) or fatty acid oxidation disorders (FAOD). Data on hospital admissions, initial laboratory results, and serious adverse events were collected. Subsequently, the website www.emergencyprotocol.net was generated in the context of the CONNECT MetabERN eHealth project following multiple meetings, protocol revisions, and translations. Representing 470 emergency protocol years, 127 hospital admissions were documented in 54/128 (42%) patients who made use of emergency letters generated based on the generic emergency protocol. Hypoglycemia (here defined as glucose concentration < 3.9 mmol/L) was reported in only 15% of hospital admissions and was uncommon in patients with ketotic GSD and patients with FAOD aged >5 years. Convulsions, coma, or death was not documented. By providing basic information, emergency letters for individual patients with hepatic GSD or the main FAOD can be generated at www.emergencyprotocol.net, in nine different languages. Generic emergency protocols are safe and easy for home management by the caregivers and the first hour in-hospital management to prevent metabolic emergencies in patients with hepatic GSD and medium-chain Acyl CoA dehydrogenase deficiency. The website www.emergencyprotocol.net is designed to support families and healthcare providers to generate personalized emergency letters for patients with hepatic GSD and the main FAOD.
Assuntos
Tratamento de Emergência/métodos , Doença de Depósito de Glicogênio Tipo I/metabolismo , Hipoglicemia/terapia , Erros Inatos do Metabolismo Lipídico/metabolismo , Telemedicina , Adolescente , Adulto , Criança , Pré-Escolar , Jejum , Ácidos Graxos/metabolismo , Feminino , Doença de Depósito de Glicogênio Tipo I/fisiopatologia , Humanos , Hipoglicemia/etiologia , Lactente , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/fisiopatologia , Masculino , Pessoa de Meia-Idade , Oxirredução , Estudos Retrospectivos , Adulto JovemRESUMO
Glycogen storage disease type IIIa (GSDIIIa) is an inborn error of carbohydrate metabolism caused by a debranching enzyme deficiency. A subgroup of GSDIIIa patients develops severe myopathy. The purpose of this study was to investigate whether acute nutritional ketosis (ANK) in response to ketone-ester (KE) ingestion is effective to deliver oxidative substrate to exercising muscle in GSDIIIa patients. This was an investigator-initiated, researcher-blinded, randomized, crossover study in six adult GSDIIIa patients. Prior to exercise subjects ingested a carbohydrate drink (~66 g, CHO) or a ketone-ester (395 mg/kg, KE) + carbohydrate drink (30 g, KE + CHO). Subjects performed 15-minute cycling exercise on an upright ergometer followed by 10-minute supine cycling in a magnetic resonance (MR) scanner at two submaximal workloads (30% and 60% of individual maximum, respectively). Blood metabolites, indirect calorimetry data, and in vivo 31 P-MR spectra from quadriceps muscle were collected during exercise. KE + CHO induced ANK in all six subjects with median peak ßHB concentration of 2.6 mmol/L (range: 1.6-3.1). Subjects remained normoglycemic in both study arms, but delta glucose concentration was 2-fold lower in the KE + CHO arm. The respiratory exchange ratio did not increase in the KE + CHO arm when workload was doubled in subjects with overt myopathy. In vivo 31 P MR spectra showed a favorable change in quadriceps energetic state during exercise in the KE + CHO arm compared to CHO in subjects with overt myopathy. Effects of ANK during exercise are phenotype-specific in adult GSDIIIa patients. ANK presents a promising therapy in GSDIIIa patients with a severe myopathic phenotype. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT03011203.
Assuntos
Bebidas , Exercício Físico , Doença de Depósito de Glicogênio Tipo III/dietoterapia , Cetose/induzido quimicamente , Doenças Musculares/dietoterapia , Adulto , Glicemia/análise , Metabolismo dos Carboidratos , Estudos Cross-Over , Dieta Cetogênica , Carboidratos da Dieta , Ésteres/administração & dosagem , Feminino , Doença de Depósito de Glicogênio Tipo III/metabolismo , Humanos , Cetonas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Países Baixos , FenótipoRESUMO
There is paucity of literature on dietary treatment in glycogen storage disease (GSD) type IV and formal guidelines are not available. Traditionally, liver transplantation was considered the only treatment option for GSD IV. In light of the success of dietary treatment for the other hepatic forms of GSD, we have initiated this observational study to assess the outcomes of medical diets, which limit the accumulation of glycogen. Clinical, dietary, laboratory, and imaging data for 15 GSD IV patients from three centres are presented. Medical diets may have the potential to delay or prevent liver transplantation, improve growth and normalize serum aminotransferases. Individual care plans aim to avoid both hyperglycaemia, hypoglycaemia and/or hyperketosis, to minimize glycogen accumulation and catabolism, respectively. Multidisciplinary monitoring includes balancing between traditional markers of metabolic control (ie, growth, liver size, serum aminotransferases, glucose homeostasis, lactate, and ketones), liver function (ie, synthesis, bile flow and detoxification of protein), and symptoms and signs of portal hypertension.