Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 209(8): 1555-1565, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36096642

RESUMO

Tuberculosis (TB) remains one of the deadliest infectious diseases worldwide, posing great social and economic burden to affected countries. Novel vaccine approaches are needed to increase protective immunity against the causative agent Mycobacterium tuberculosis (Mtb) and to reduce the development of active TB disease in latently infected individuals. Donor-unrestricted T cell responses represent such novel potential vaccine targets. HLA-E-restricted T cell responses have been shown to play an important role in protection against TB and other infections, and recent studies have demonstrated that these cells can be primed in vitro. However, the identification of novel pathogen-derived HLA-E binding peptides presented by infected target cells has been limited by the lack of accurate prediction algorithms for HLA-E binding. In this study, we developed an improved HLA-E binding peptide prediction algorithm and implemented it to identify (to our knowledge) novel Mtb-derived peptides with capacity to induce CD8+ T cell activation and that were recognized by specific HLA-E-restricted T cells in Mycobacterium-exposed humans. Altogether, we present a novel algorithm for the identification of pathogen- or self-derived HLA-E-presented peptides.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antígenos de Bactérias , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe I , Humanos , Peptídeos , Antígenos HLA-E
2.
Immunology ; 168(3): 526-537, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36217755

RESUMO

There is growing interest in HLA-E-restricted T-cell responses as a possible novel, highly conserved, vaccination targets in the context of infectious and malignant diseases. The developing field of HLA multimers for the detection and study of peptide-specific T cells has allowed the in-depth study of TCR repertoires and molecular requirements for efficient antigen presentation and T-cell activation. In this study, we developed a method for efficient peptide thermal exchange on HLA-E monomers and multimers allowing the high-throughput production of HLA-E multimers. We optimized the thermal-mediated peptide exchange, and flow cytometry staining conditions for the detection of TCR and NKG2A/CD94 receptors, showing that this novel approach can be used for high-throughput identification and analysis of HLA-E-binding peptides which could be involved in T-cell and NK cell-mediated immune responses. Importantly, our analysis of NKG2A/CD94 interaction in the presence of modified peptides led to new molecular insights governing the interaction of HLA-E with this receptor. In particular, our results reveal that interactions of HLA-E with NKG2A/CD94 and the TCR involve different residues. Altogether, we present a novel HLA-E multimer technology based on thermal-mediated peptide exchange allowing us to investigate the molecular requirements for HLA-E/peptide interaction with its receptors.


Assuntos
Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Ligação Proteica , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos , Receptores de Antígenos de Linfócitos T , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Antígenos HLA-E
3.
iScience ; 27(6): 110120, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38939106

RESUMO

Human leukocyte antigen (HLA) class-I molecules present fragments of the cellular proteome to the T cell receptor (TCR) of cytotoxic T cells to control infectious diseases and cancer. The large number of combinations of HLA class-I allotypes and peptides allows for highly specific and dedicated low-affinity interactions to a diverse array of TCRs and natural killer (NK) cell receptors. Whether the divergent HLA class-I peptide complex is exclusive for interactions with these proteins is unknown. Using genome-wide CRISPR-Cas9 activation and knockout screens, we identified peptide-specific HLA-C∗07 combinations that can interact with the surface molecules CD55 and heparan sulfate. These interactions closely resemble the HLA class-I interaction with the TCR regarding both the affinity range and the specificity of the peptide and HLA allele. These findings indicate that various proteins can specifically bind HLA class-I peptide complexes due to their polymorphic nature, which suggests there are more interactions like the ones we describe here.

4.
Cell Rep ; 42(12): 113516, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38048225

RESUMO

The immune checkpoint NKG2A/CD94 is a promising target for cancer immunotherapy, and its ligand major histocompatibility complex E (MHC-E) is frequently upregulated in cancer. NKG2A/CD94-mediated inhibition of lymphocytes depends on the presence of specific leader peptides in MHC-E, but when and where they are presented in situ is unknown. We apply a nanobody specific for the Qdm/Qa-1b complex, the NKG2A/CD94 ligand in mouse, and find that presentation of Qdm peptide depends on every member of the endoplasmic reticulum-resident peptide loading complex. With a turnover rate of 30 min, the Qdm peptide reflects antigen processing capacity in real time. Remarkably, Qdm/Qa-1b complexes require inflammatory signals for surface expression in situ, despite the broad presence of Qa-1b molecules in homeostasis. Furthermore, we identify LILRB1 as a functional inhibition receptor for MHC-E in steady state. These data provide a molecular understanding of NKG2A blockade in immunotherapy and assign MHC-E as a convergent ligand for multiple immune checkpoints.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Camundongos , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Células Matadoras Naturais , Ligantes , Peptídeos/metabolismo , Neoplasias/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA