Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Chem Biol ; 12(10): 802-809, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27501396

RESUMO

Guanine-nucleotide dissociation inhibitors (GDIs) are negative regulators of Rho family GTPases that sequester the GTPases away from the membrane. Here we ask how GDI-Cdc42 interaction regulates localized Cdc42 activation for cell motility. The sensitivity of cells to overexpression of Rho family pathway components led us to a new biosensor, GDI.Cdc42 FLARE, in which Cdc42 is modified with a fluorescence resonance energy transfer (FRET) 'binding antenna' that selectively reports Cdc42 binding to endogenous GDIs. Similar antennae could also report GDI-Rac1 and GDI-RhoA interaction. Through computational multiplexing and simultaneous imaging, we determined the spatiotemporal dynamics of GDI-Cdc42 interaction and Cdc42 activation during cell protrusion and retraction. This revealed remarkably tight coordination of GTPase release and activation on a time scale of 10 s, suggesting that GDI-Cdc42 interactions are a critical component of the spatiotemporal regulation of Cdc42 activity, and not merely a mechanism for global sequestration of an inactivated pool of signaling molecules.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Análise Espaço-Temporal
2.
Proc Natl Acad Sci U S A ; 112(37): E5150-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324884

RESUMO

Cofilin, a critical player of actin dynamics, is spatially and temporally regulated to control the direction and force of membrane extension required for cell locomotion. In carcinoma cells, although the signaling pathways regulating cofilin activity to control cell direction have been established, the molecular machinery required to generate the force of the protrusion remains unclear. We show that the cofilin phosphatase chronophin (CIN) spatiotemporally regulates cofilin activity at the cell edge to generate persistent membrane extension. We show that CIN translocates to the leading edge in a PI3-kinase-, Rac1-, and cofilin-dependent manner after EGF stimulation to activate cofilin, promotes actin free barbed end formation, accelerates actin turnover, and enhances membrane protrusion. In addition, we establish that CIN is crucial for the balance of protrusion/retraction events during cell migration. Thus, CIN coordinates the leading edge dynamics by controlling active cofilin levels to promote MTLn3 cell protrusion.


Assuntos
Cofilina 1/fisiologia , Regulação da Expressão Gênica , Fosfoproteínas Fosfatases/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Receptores ErbB/metabolismo , Humanos , Proteínas dos Microfilamentos/fisiologia , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Transdução de Sinais
3.
Curr Opin Cell Biol ; 18(1): 26-31, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16337782

RESUMO

Cofilin is a ubiquitous actin-binding factor required for the reorganization of actin filaments in eukaryotes. The dephosphorylation of cofilin enables its actin severing and depolymerizing activity and drives directional cell motility, thus providing a simple phosphoregulatory mechanism for actin reorganization. To date, two cofilin-specific phosphatases have been identified: Slingshot and Chronophin. These cofilin phosphatases are unrelated in sequence and regulatory properties, each potentially providing a unique mechanism for cofilin activation under varying biological circumstances.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Actinas/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Animais , Humanos , Hidrolases/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosforilação , Distribuição Tecidual
4.
Dev Cell ; 13(5): 646-662, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17981134

RESUMO

Protrusion of the leading edge of migrating epithelial cells requires precise regulation of two actin filament (F-actin) networks, the lamellipodium and the lamella. Cofilin is a downstream target of Rho GTPase signaling that promotes F-actin cycling through its F-actin-nucleating, -severing, and -depolymerizing activity. However, its function in modulating lamellipodium and lamella dynamics, and the implications of these dynamics for protrusion efficiency, has been unclear. Using quantitative fluorescent speckle microscopy, immunofluorescence, and electron microscopy, we establish that the Rac1/Pak1/LIMK1 signaling pathway controls cofilin activity within the lamellipodium. Enhancement of cofilin activity accelerates F-actin turnover and retrograde flow, resulting in widening of the lamellipodium. This is accompanied by increased spatial overlap of the lamellipodium and lamella networks and reduced cell-edge protrusion efficiency. We propose that cofilin functions as a regulator of cell protrusion by modulating the spatial interaction of the lamellipodium and lamella in response to upstream signals.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Actinas/fisiologia , Células Epiteliais/fisiologia , Proteínas dos Microfilamentos/fisiologia , Pseudópodes/fisiologia , Quinases Ativadas por p21/fisiologia , Linhagem Celular , Movimento Celular , Imunofluorescência , Humanos , Quinases Lim/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Trends Cell Biol ; 15(7): 356-63, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15921909

RESUMO

The GDP dissociation inhibitors (GDIs) are pivotal regulators of Rho GTPase function. GDIs control the access of Rho GTPases to regulatory guanine nucleotide exchange factors and GTPase-activating proteins, to effector targets and to membranes where such effectors reside. We discuss here our current understanding of how Rho GTPase-GDI complexes are regulated by various proteins, lipids and enzymes that exert GDI displacement activity. We propose that phosphorylation mediated by diverse kinases might provide a means of controlling and coordinating Rho GTPase activation.


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/fisiologia , Proteínas Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Ativadores de Enzimas/farmacologia , Fatores de Troca do Nucleotídeo Guanina/farmacologia , Humanos , Lipídeos/farmacologia , Fosforilação , Proteínas/fisiologia , Proteínas Supressoras de Tumor , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/fisiologia , Inibidor gama de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
6.
FASEB J ; 22(6): 1737-47, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18198211

RESUMO

The signal transduction pathways involved in neuronal death are not well understood. Neuroglobin (Ngb), a recently discovered vertebrate globin expressed predominantly in the brain, shows increased expression in neurons in response to oxygen deprivation and protects neurons from ischemic and hypoxic death. The mechanism of this neuroprotection is unclear. We examined the surface distribution of raft membrane microdomains in cortical neuron cultures during hypoxia using the raft marker cholera toxin B (CTx-B) subunit. Mechanistically, we demonstrate that hypoxia induces rapid polarization of somal membranes and aggregation of microdomains with the subjacent mitochondrial network. This signaling complex is formed well before neurons commit to die, consistent with an early role in death signal transduction. Neurons from Ngb-overexpressing transgenic (Ngb-Tg) mice do not undergo microdomain polarization or mitochondrial aggregation in response to, and are resistant to death from hypoxia. We link the protective actions of Ngb to inhibition of Pak1 kinase activity and Rac1-GDP-dissociation inhibitor disassociation, and inhibition of actin assembly and death-signaling module polarization.


Assuntos
Globinas/fisiologia , Hipóxia/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/patologia , Transdução de Sinais , Actinas/antagonistas & inibidores , Animais , Córtex Cerebral , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Camundongos , Camundongos Transgênicos , Neuroglobina , Quinases Ativadas por p21/antagonistas & inibidores
7.
Mol Biol Cell ; 17(11): 4760-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16943322

RESUMO

Rho GTPases (Rac, Rho, and Cdc42) play important roles in regulating cell function through their ability to coordinate the actin cytoskeleton, modulate the formation of signaling reactive oxidant species, and control gene transcription. Activation of Rho GTPase signaling pathways requires the regulated release of Rho GTPases from RhoGDI complexes, followed by their reuptake after membrane cycling. We show here that Src kinase binds and phosphorylates RhoGDI both in vitro and in vivo at Tyr156. Analysis of Rho GTPase-RhoGDI complexes using in vitro assays of complexation and in vivo by coimmunoprecipitation analysis indicates that Src-mediated phosphorylation of Tyr156 causes a dramatic decrease in the ability of RhoGDI to form a complex with RhoA, Rac1, or Cdc42. Phosphomimetic mutation of Tyr156-->Glu results in the constitutive association of RhoGDI(Y156E) with the plasma membrane and/or associated cortical actin. Substantial cortical localization of tyrosine-phosphorylated RhoGDI is also observed in fibroblasts expressing active Src, where it is most evident in podosomes and regions of membrane ruffling. Expression of membrane-localized RhoGDI(Y156E) mutant is associated with enhanced cell spreading and membrane ruffling. These results suggest that Src-mediated RhoGDI phosphorylation is a novel physiological mechanism for regulating Rho GTPase cytosol membrane-cycling and activity.


Assuntos
Estruturas da Membrana Celular/metabolismo , Citosol/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular Transformada , Fibroblastos/citologia , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Transporte Proteico , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
8.
Front Cell Neurosci ; 13: 324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379509

RESUMO

Proper axonal growth and guidance is essential for neuron differentiation and development. Abnormal neuronal development due to genetic or epigenetic influences can contribute to neurological and mental disorders such as Down syndrome, Rett syndrome, and autism. Identification of the molecular targets that promote proper neuronal growth and differentiation may restore structural and functional neuroplasticity, thus improving functional performance in neurodevelopmental disorders. Using differentiated human neuronal progenitor cells (NPCs) derived from induced pluripotent stem cells (iPSCs), the present study demonstrates that during early stage differentiation of human NPCs, neuron-targeted overexpression constitutively active Rac1 (Rac1CA) and constitutively active Cdc42 (Cdc42CA) enhance expression of P-Cav-1, T-Cav-1, and P-cofilin and increases axonal growth. Similarly, neuron-targeted over-expression of Cav-1 (termed SynCav1) increases axonal development by increasing both axon length and volume. Moreover, inhibition of Cav-1(Y14A) phosphorylation blunts Rac1/Cdc42-mediated both axonal growth and differentiation of human NPCs and SynCav1(Y14A)-treated NPCs exhibited blunted axonal growth. These results suggest that: (1) SynCav1-mediated dendritic and axonal growth in human NPCs is dependent upon P-Cav-1, (2) P-Cav-1 is necessary for proper axonal growth during early stages of neuronal differentiation, and (3) Rac1/Cdc42CA-mediated neuronal growth is in part dependent upon P-Cav-1. In conclusion, Cav-1 phosphorylation is essential for human neuronal axonal growth during early stages of neuronal differentiation.

9.
ACS Synth Biol ; 6(7): 1257-1262, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28365983

RESUMO

P21-activated kinases (PAKs) are important regulators of cell motility and morphology. It has been challenging to interrogate their functions because cells adapt to genetic manipulation of PAK, and because inhibitors act on multiple PAK isoforms. Here we describe genetically encoded PAK1 analogues that can be selectively activated by the membrane-permeable small molecule rapamycin. An engineered domain inserted away from the active site responds to rapamycin to allosterically control activity of the PAK1 isoform. To examine the mechanism of rapamycin-induced PAK1 activation, we used molecular dynamics with graph theory to predict amino acids involved in allosteric communication with the active site. This analysis revealed allosteric pathways that were exploited to generate kinase switches. Activation of PAK1 resulted in transient cell spreading in metastatic breast cancer cells, and long-term dendritic spine enlargement in mouse hippocampal CA1 neurons.


Assuntos
Regulação Alostérica/fisiologia , Quinases Ativadas por p21/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Animais , Região CA1 Hipocampal/metabolismo , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Movimento Celular/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Quinases Ativadas por p21/genética
10.
Methods Enzymol ; 406: 80-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16472651

RESUMO

Rho GTPase activation is partially regulated at the level of guanine nucleotide dissociation inhibitors, or GDIs. The binding of Rho GTPases to GDIs has been shown to dramatically reduce the action of guanine nucleotide exchange factors (GEFs) to initiate Rho GTPase activation. The GDI-GTPase complex thus serves as a major point of regulation of Rho GTPase activity and function. It is likely that specific mechanisms exist to dissociate individual members of the Rho GTPase family from cytosolic Rho GDI complexes to facilitate the activation process. Such dissociation would likely be tightly coupled to GEF-mediated guanine nucleotide exchange and membrane association of the activated GTPase, resulting in effector binding and functional responses. Accumulating evidence suggests that the phosphorylation of either the Rho GTPases themselves and/or phosphorylation of GDIs might serve as a mechanism for regulating the formation and/or dissociation of Rho GTPase-GDI complexes. Indeed, the selective release of Rac1 from RhoGDI complexes induced by the p21-activated kinase-regulated phosphorylation of RhoGDI has been reported. We describe here methods for the analysis of RhoGDI phosphorylation and regulation by p21-activated kinase 1 (Pak1).


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HeLa , Humanos , Fosforilação , Quinases Ativadas por p21 , Proteínas rho de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
11.
Methods Mol Biol ; 332: 269-79, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16878699

RESUMO

The recognition that Rho guanosine triphosphatases (GTPases) (Rho, Rac, and Cdc42) play important regulatory roles in many areas of cell biology has made the ability to measure their activity in cells an important biological tool. Because Rho GTPases become activated by conversion from guanosine diphosphate-bound states to guanosine triphosphate (GTP)-bound forms, affinity-based methods to detect the formation of GTP-Rho GTPases have been developed and are widely used for the purpose of assessing Rho GTPase activities in biological studies.


Assuntos
Bioensaio/métodos , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Reguladoras de Apoptose , Ativação Enzimática , Proteínas de Ligação ao GTP , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Quinases Ativadas por p21 , Proteínas rho de Ligação ao GTP/genética
12.
J Cell Biol ; 208(7): 961-74, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25800056

RESUMO

We previously identified Waf1 Cip1 stabilizing protein 39 (WISp39) as a binding partner for heat shock protein 90 (Hsp90). We now report that WISp39 has an essential function in the control of directed cell migration, which requires WISp39 interaction with Hsp90. WISp39 knockdown (KD) resulted in the loss of directional motility of mammalian cells and profound changes in cell morphology, including the loss of a single leading edge. WISp39 binds Coronin 1B, known to regulate the Arp2/3 complex and Cofilin at the leading edge. WISp39 preferentially interacts with phosphorylated Coronin 1B, allowing it to complex with Slingshot phosphatase (SSH) to dephosphorylate and activate Cofilin. WISp39 also regulates Arp2/3 complex localization at the leading edge. WISp39 KD-induced morphological changes could be rescued by overexpression of Coronin 1B together with a constitutively active Cofilin mutant. We conclude that WISp39 associates with Hsp90, Coronin 1B, and SSH to regulate Cofilin activation and Arp2/3 complex localization at the leading edge.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Imunofilinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fatores de Despolimerização de Actina/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Ativação Enzimática/genética , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Imunofilinas/genética , Proteínas dos Microfilamentos/biossíntese , Fosfoproteínas Fosfatases , Fosforilação , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a Tacrolimo
13.
Mol Cell Biol ; 35(8): 1401-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666508

RESUMO

Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor ß8 integrin that plays essential roles in directional cell motility. ß8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell's leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells.


Assuntos
Movimento Celular , Cadeias beta de Integrinas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Masculino , Camundongos , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Cell Stem Cell ; 14(4): 523-34, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24702998

RESUMO

The creation of induced pluripotent stem cells (iPSCs) from somatic cells by ectopic expression of transcription factors has galvanized the fields of regenerative medicine and developmental biology. Here, we report a kinome-wide RNAi-based analysis to identify kinases that regulate somatic cell reprogramming to iPSCs. We prepared 3,686 small hairpin RNA (shRNA) lentiviruses targeting 734 kinase genes covering the entire mouse kinome and individually examined their effects on iPSC generation. We identified 59 kinases as barriers to iPSC generation and characterized seven of them further. We found that shRNA-mediated knockdown of the serine/threonine kinases TESK1 or LIMK2 promoted mesenchymal-to-epithelial transition, decreased COFILIN phosphorylation, and disrupted Actin filament structures during reprogramming of mouse embryonic fibroblasts. Similarly, knockdown of TESK1 in human fibroblasts also promoted reprogramming to iPSCs. Our study reveals the breadth of kinase networks regulating pluripotency and identifies a role for cytoskeletal remodeling in modulating the somatic cell reprogramming process.


Assuntos
Diferenciação Celular , Reprogramação Celular/genética , Citoesqueleto/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Serina-Treonina Quinases/genética , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Quinases Lim/antagonistas & inibidores , Quinases Lim/genética , Quinases Lim/metabolismo , Camundongos , Microscopia Confocal , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Teratoma/metabolismo , Teratoma/patologia
15.
Small GTPases ; 4(3): 174-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23648943

RESUMO

Vesicle trafficking is crucial for delivery of membrane compartments as well as signaling molecules to specific sites on the plasma membrane for regulation of diverse processes such as cell division, migration, polarity establishment and secretion. Rho GTPases are well-studied signaling molecules that regulate actin cytoskeleton in response to variety of extracellular stimuli. Increasing amounts of evidence suggest that Rho proteins play a critical role in vesicle trafficking in both the exocytic and endocytic pathways; however, the molecular mechanism underlying the process remains largely unclear. We recently defined a mechanism of action for RhoA in membrane trafficking pathways through regulation of the octameric complex exocyst in a manuscript published in Developmental Cell. We have shown that microtubule-associated RhoA-activating factor GEF-H1 is involved in endocytic and excocytic vesicle trafficking. GEF-H1 activates RhoA in response to RalA GTPase, which in turn regulates the localization and the assembly of exocyst components and exocytosis. Our work defines a mechanism for RhoA activation in response to RalA signaling and during vesicle trafficking. These results provide a framework for understanding how RhoA/GEF-H1 regulates the coordination of actin and microtubule cytoskeleton modulation and vesicle trafficking during migration and cell division.


Assuntos
Citoesqueleto/metabolismo , Exossomos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Actinas/metabolismo , Animais , Movimento Celular , Exocitose , Microtúbulos/metabolismo , Interferência de RNA , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais , Proteínas ral de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
16.
Mol Biol Cell ; 24(3): 194-209, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23223568

RESUMO

Spatial control of RhoGTPase-inactivating GAP components remains largely enigmatic. We describe a brain-specific RhoGAP splice variant, BARGIN (BGIN), which comprises a combination of BAR, GAP, and partial CIN phosphatase domains spliced from adjacent SH3BP1 and CIN gene loci. Excision of BGIN exon 2 results in recoding of a 42-amino acid N-terminal stretch. The partial CIN domain is a poly-ubiquitin (poly-Ub)-binding module that facilitates BGIN distribution to membranous and detergent-insoluble fractions. Poly-Ub/BGIN interactions support BGIN-mediated inactivation of a membranous Rac1 population, which consequently inactivates membrane-localized Rac1 effector systems such as reactive oxygen species (ROS) generation by the Nox1 complex. Given that Ub aggregate pathology and proteotoxicity are central themes in various neurodegenerative disorders, we investigated whether BGIN/Rac1 signaling could be involved in neurodegenerative proteotoxicity. BGIN/Ub interactions are observed through colocalization in tangle aggregates in the Alzheimer's disease (AD) brain. Moreover, enhanced BGIN membrane distribution correlates with reduced Rac1 activity in AD brain tissue. Finally, BGIN contributes to Rac1 inhibition and ROS generation in an amyloid precursor protein (APP) proteotoxicity model. These results suggest that BGIN/poly-Ub interactions enhance BGIN membrane distribution and relay poly-Ub signals to enact Rac1 inactivation, and attenuation of Rac1 signaling is partially dependent on BGIN in a proteotoxic APP context.


Assuntos
Proteínas Ativadoras de GTPase/genética , Monoéster Fosfórico Hidrolases/genética , Poliubiquitina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Membrana Celular/enzimologia , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Leupeptinas/farmacologia , Dados de Sequência Molecular , NADPH Oxidase 1 , NADPH Oxidases/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Inibidores de Proteassoma/farmacologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética
17.
PLoS One ; 7(8): e41342, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876286

RESUMO

Productive protrusions allowing motile cells to sense and migrate toward a chemotactic gradient of reactive oxygen species (ROS) require a tight control of the actin cytoskeleton. However, the mechanisms of how ROS affect cell protrusion and actin dynamics are not well elucidated yet. We show here that ROS induce the formation of a persistent protrusion. In migrating epithelial cells, protrusion of the leading edge requires the precise regulation of the lamellipodium and lamella F-actin networks. Using fluorescent speckle microscopy, we showed that, upon ROS stimulation, the F-actin retrograde flow is enhanced in the lamellipodium. This event coincides with an increase of cofilin activity, free barbed ends formation, Arp2/3 recruitment, and ERK activity at the cell edge. In addition, we observed an acceleration of the F-actin flow in the lamella of ROS-stimulated cells, which correlates with an enhancement of the cell contractility. Thus, this study demonstrates that ROS modulate both the lamellipodium and the lamella networks to control protrusion efficiency.


Assuntos
Actinas/fisiologia , Extensões da Superfície Celular/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/farmacologia , Miosina não Muscular Tipo IIA/metabolismo , Multimerização Proteica , Transporte Proteico , Tropomiosina/metabolismo
18.
Dev Cell ; 23(2): 397-411, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22898781

RESUMO

The exocyst complex plays a critical role in targeting and tethering vesicles to specific sites of the plasma membrane. These events are crucial for polarized delivery of membrane components to the cell surface, which is critical for cell motility and division. Though Rho GTPases are involved in regulating actin dynamics and membrane trafficking, their role in exocyst-mediated vesicle targeting is not very clear. Herein, we present evidence that depletion of GEF-H1, a guanine nucleotide exchange factor for Rho proteins, affects vesicle trafficking. Interestingly, we found that GEF-H1 directly binds to exocyst component Sec5 in a Ral GTPase-dependent manner. This interaction promotes RhoA activation, which then regulates exocyst assembly/localization and exocytosis. Taken together, our work defines a mechanism for RhoA activation in response to RalA-Sec5 signaling and involvement of GEF-H1/RhoA pathway in the regulation of vesicle trafficking.


Assuntos
Exocitose , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Microtúbulos/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Transporte Biológico , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Ligação Proteica , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais
19.
Eur J Cell Biol ; 90(2-3): 164-71, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20609497

RESUMO

NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date seven members of this family have been reported, including Nox1-5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and requires two cytosolic regulators, the organizer subunit NoxO1 and the activator subunit NoxA1, as well as the binding of Rac1 GTPase, for its activity. Recently, we identified the c-Src substrate proteins Tks4 and Tks5 as functional members of a p47(phox)-related organizer superfamily. As a functional consequence of this interaction, Nox1 localizes to invadopodia, actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior. Here, we report that Tks4 and Tks5 directly bind to NoxA1. Moreover, the integrity of the N-terminal PRR of NoxA1 is essential for this direct interaction with the Tks proteins. When the PRR in NoxA1 is disrupted, Tks proteins cannot bind NoxA1 and lose their ability to support Nox1-dependent ROS generation. Consistent with this, Tks4 and Tks5 are unable to act as organizers for Nox2 because of their inability to interact with p67(phox), which lacks the N-terminal PRR, thus conferring a unique specificity to Tks4 and 5. Taken together, these results clarify the molecular basis for the interaction between NoxA1 and the Tks proteins and may provide new insights into the pharmacological design of a more effective anti-metastatic strategy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Imunoprecipitação , Dados de Sequência Molecular , NADPH Oxidase 1 , NADPH Oxidases/metabolismo , Domínios Proteicos Ricos em Prolina , Ligação Proteica , Alinhamento de Sequência , Transfecção
20.
J Cell Biol ; 193(7): 1289-303, 2011 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-21708980

RESUMO

Cell motility requires the spatial and temporal coordination of forces in the actomyosin cytoskeleton with extracellular adhesion. The biochemical mechanism that coordinates filamentous actin (F-actin) assembly, myosin contractility, adhesion dynamics, and motility to maintain the balance between adhesion and contraction remains unknown. In this paper, we show that p21-activated kinases (Paks), downstream effectors of the small guanosine triphosphatases Rac and Cdc42, biochemically couple leading-edge actin dynamics to focal adhesion (FA) dynamics. Quantitative live cell microscopy assays revealed that the inhibition of Paks abolished F-actin flow in the lamella, displaced myosin IIA from the cell edge, and decreased FA turnover. We show that, by controlling the dynamics of these three systems, Paks regulate the protrusive activity and migration of epithelial cells. Furthermore, we found that expressing Pak1 was sufficient to overcome the inhibitory effects of excess adhesion strength on cell motility. These findings establish Paks as critical molecules coordinating cytoskeletal systems for efficient cell migration.


Assuntos
Actinas/metabolismo , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Quinases Ativadas por p21/fisiologia , Actinas/genética , Actinas/ultraestrutura , Animais , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Cinética , Miosina não Muscular Tipo IIA/análise , Paxilina/análise , Paxilina/metabolismo , Fenótipo , Potoroidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA