Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Trends Genet ; 39(10): 721-723, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516623

RESUMO

There is growing evidence that the microbiome influences host phenotypic variation. Incorporating information about the holobiont - the host and its microbiome - into genomic prediction models may accelerate genetic improvements in farmed animal populations. Importantly, these models must account for the indirect effects of the host genome on microbiome-mediated phenotypes.


Assuntos
Microbiota , Animais , Microbiota/genética , Genoma/genética , Genômica , Fenótipo , Modelos Genéticos
2.
Mol Ecol ; 31(18): 4656-4671, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35729748

RESUMO

Associations between host genotype and host-associated microbiomes have been shown in a variety of animal clades, but studies on teleosts mostly show weak associations. Our study aimed to explore these relationships in four sympatric Serrasalmidae (i.e., piranha) teleosts from an Amazonian lake, using data sets from the hosts genomes (single nucleotide polymorphisms from genotyping by sequencing), skin and gut microbiomes (16S rRNA gene metataxonomics) and diets (COI metabarcoding) from the same fish individuals. First, we investigated whether there were significant covariations of microbiome and fish genotypes at the inter- and intraspecific levels. We also assessed the extent of covariation between Serrasalmidae diet and microbiome, to isolate genotypic from dietary effects on community structure. We observed a significant covariation of skin microbiomes and host genotypes at interspecific (R2  = 24.4%) and intraspecific (R2  = 6.2%) levels, whereas gut microbiomes correlated poorly with host genotypes. Serrasalmidae diet composition was significantly correlated to fish genotype only at the interspecific level (R2  = 5.4%), but did not covary with gut microbiome composition (Mantel R = -.04). Second, we investigated whether the study of interspecific differentiation could benefit from considering host-associated microbial communities in addition to host genotypes. By using a nonmetric multidimensional scaling (NMDS) ordination-based approach, we observed that ordinations from skin- and gut species-specific bacterial biomarkers identified through a random forest algorithm could significantly increase the average interspecific differentiation detected through host genotype data alone. Although future studies encompassing additional species and environments are needed, our results suggest Serrasalmidae microbiomes could constitute an insightful trait to be considered when studying the interspecific differences between members of this clade.


Assuntos
Caraciformes , Microbioma Gastrointestinal , Microbiota , Animais , Caraciformes/genética , Microbioma Gastrointestinal/genética , Genômica , Microbiota/genética , RNA Ribossômico 16S/genética
3.
Brief Bioinform ; 20(6): 1981-1996, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30084940

RESUMO

It is easy for today's students and researchers to believe that modern bioinformatics emerged recently to assist next-generation sequencing data analysis. However, the very beginnings of bioinformatics occurred more than 50 years ago, when desktop computers were still a hypothesis and DNA could not yet be sequenced. The foundations of bioinformatics were laid in the early 1960s with the application of computational methods to protein sequence analysis (notably, de novo sequence assembly, biological sequence databases and substitution models). Later on, DNA analysis also emerged due to parallel advances in (i) molecular biology methods, which allowed easier manipulation of DNA, as well as its sequencing, and (ii) computer science, which saw the rise of increasingly miniaturized and more powerful computers, as well as novel software better suited to handle bioinformatics tasks. In the 1990s through the 2000s, major improvements in sequencing technology, along with reduced costs, gave rise to an exponential increase of data. The arrival of 'Big Data' has laid out new challenges in terms of data mining and management, calling for more expertise from computer science into the field. Coupled with an ever-increasing amount of bioinformatics tools, biological Big Data had (and continues to have) profound implications on the predictive power and reproducibility of bioinformatics results. To overcome this issue, universities are now fully integrating this discipline into the curriculum of biology students. Recent subdisciplines such as synthetic biology, systems biology and whole-cell modeling have emerged from the ever-increasing complementarity between computer science and biology.


Assuntos
Biologia Computacional/história , Animais , DNA/química , História do Século XX , História do Século XXI , Humanos , Proteínas/química
4.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503908

RESUMO

Teleost fish represent an invaluable repertoire of host species to study the factors shaping animal-associated microbiomes. Several studies have shown that the phylogenetic structure of the fish gut microbiome is driven by species-specific (e.g., host ancestry, genotype, or diet) and habitat-specific (e.g., hydrochemical parameters and bacterioplankton composition) factors. However, our understanding of other host-associated microbial niches, such as the skin mucus microbiome, remains limited. The goal of our study was to explore simultaneously the phylogenetic structure of the fish skin mucus and gut microbiome and compare the effect of species- and habitat-specific drivers on the structure of microbial communities in both tissues. We sampled 114 wild fish from 6 populations of 3 ecologically and phylogenetically contrasting Amazonian teleost species. Water samples were collected at each site, and 10 physicochemical parameters were characterized. The skin mucus, gut, and water microbial communities were characterized using a metabarcoding approach targeting the V3-V4 regions of the 16S rRNA. Our results showed a significant distinction between the phylogenetic profile and diversity of the microbiome from each microbial niche. Skin mucus and bacterioplankton communities were significantly closer in composition than gut and free-living communities. Species-specific factors mostly modulated gut bacterial communities, while the skin mucus microbiome was predominantly associated with environmental physicochemistry and bacterioplankton community structure. These results suggest that the variable skin mucus community is a relevant target for the development of microbial biomarkers of environmental status, while the more conserved gut microbiome is better suited to study long-term host-microbe interactions over evolutionary time scales.IMPORTANCE Whether host-associated microbiomes are mostly shaped by species-specific or environmental factors is still unresolved. In particular, it is unknown to what extent microbial communities from two different host tissues from the same host respond to these factors. Our study is one of the first to focus on the microbiome of teleost fish to shed a light on this topic as we investigate how the phylogenetic structure of microbial communities from two distinct fish tissues are shaped by species- and habitat-specific factors. Our study showed that in contrast to the teleost gut microbiome, skin mucus communities are highly environment dependent. This result has various implications: (i) the skin mucus microbiome should be used, rather than the gut, to investigate bacterial biomarkers of ecosystem perturbance in the wild, and (ii) the gut microbiome is better suited for studies of the drivers of phylosymbiosis, or the coevolution of fish and their symbionts.


Assuntos
Bactérias/isolamento & purificação , Caraciformes/microbiologia , Ciclídeos/microbiologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Pele/microbiologia , Animais , Bactérias/classificação , Brasil , Ecossistema , Mucosa/microbiologia , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Especificidade da Espécie
5.
Mol Ecol ; 28(15): 3612-3626, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31325401

RESUMO

The world's richest freshwater fish community thrives in gradients of contrasting environments in Amazonia, ranging from ion-poor acidic black waters, to ion-rich circumneutral white waters. These hydrochemical gradients structure Amazonian fish assemblages via ecological speciation events. Fish bacterial communities contain an important genetic heritage essential for their hosts' survival and are also involved in adaptive divergence via niche adaptation processes, but the extent to which they evolve in response to hydrochemical gradients in Amazonia is unknown. Here we investigated bacterial communities (gut and skin mucus) of two ecologically and phylogenetically divergent host species (Mesonauta festivus and Serrasalmus rhombeus) distributed throughout these hydrochemical gradients. The goal was to characterize intra- and interspecific Amazonian fish microbiome variations across multiple scales. Using a 16S metabarcoding approach, we investigated the microbiota of 43 wild M. festivus, 32 S. rhombeus and seven water samples, collected at seven sampling sites encompassing both water colours. Taxonomical structures of bacterial communities from both host species were significantly correlated to the environmental continua of magnesium, sodium, dissolved organic carbon, calcium, dissolved O2 , pH, potassium, hardness and chloride. Analysis of discriminating features in community structures across multiple scales demonstrated intra- and interspecific structural parallelisms in the response to the hydrochemical gradients. Together, these parallelisms suggest the action of selection on bacterial community structures along Amazonian hydrochemical gradients. Functional approaches along with reciprocal transplant experiments will provide further insights on the potential contribution of Amazonian fish microbiomes in host adaptation and ecological speciation events.


Assuntos
Peixes/microbiologia , Microbiota , Água , Animais , Evolução Biológica , Brasil , Especificidade de Órgãos , Especificidade da Espécie , Estatísticas não Paramétricas
6.
BMC Genomics ; 16: 500, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26149072

RESUMO

BACKGROUND: Hygienic behavior is a complex, genetically-based quantitative trait that serves as a key defense mechanism against parasites and diseases in Apis mellifera. Yet, the genomic basis and functional pathways involved in the initiation of this behavior are still unclear. Deciphering the genomic basis of hygienic behavior is a prerequisite to developing an extensive repertoire of genetic markers associated to the performance level of this quantitative trait. To fill this knowledge gap, we performed an RNA-seq on brain samples of 25 honeybees per hives from five hygienic and three non-hygienic hives. RESULTS: This analysis revealed that a limited number of functional genes are involved in honeybee hygienic behavior. The genes identified, and especially their location in the honeybee genome, are consistent with previous findings. Indeed, the genomic sequences of most differentially expressed genes were found on the majority of the QTL regions associated to the hygienic behavior described in previous studies. According to the Gene Ontology annotation, 15 genes are linked to the GO-terms DNA or nucleotide binding, indicating a possible role of these genes in transcription regulation. Furthermore, GO-category enrichment analysis revealed that electron carrier activity is over-represented, involving only genes belonging to the cytochrome P450. Cytochrome P450 enzymes' overexpression can be explained by a disturbance in the regulation of expression induced by changes in transcription regulation or sensitivity to xenobiotics. Over-expressed cytochrome P450 enzymes could potentially degrade the odorant pheromones or chemicals that normally signal the presence of a diseased brood before activation of the removal process thereby inhibit hygienic behavior. CONCLUSIONS: These findings improve our understanding on the genetics basis of the hygienic behavior. Our results show that hygienic behavior relies on a limited set of genes linked to different regulation patterns (expression level and biological processes) associated with an over-expression of cytochrome P450 genes.


Assuntos
Abelhas/genética , Regulação da Expressão Gênica/genética , Genoma de Inseto/genética , Animais , Comportamento Animal , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Ontologia Genética , Marcadores Genéticos/genética , Anotação de Sequência Molecular/métodos , Comportamento Social , Transcrição Gênica/genética
7.
Antimicrob Agents Chemother ; 58(12): 7367-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267667

RESUMO

The ubiquitous water-borne Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a worldwide disease in fish farms. Plasmids carrying antibiotic resistance genes have already been described for this bacterium. The aim of the present study was to identify and characterize additional multidrug resistance plasmids in A. salmonicida subsp. salmonicida. We sequenced the plasmids present in two multiple antibiotic-resistant isolates using high-throughput technologies. We also investigated 19 other isolates with various multidrug resistance profiles by genotyping PCR and assessed their resistance to tetracycline. We identified variants of the pAB5S9 and pSN254 plasmids that carry several antibiotic resistance genes and that have been previously reported in bacteria other than A. salmonicida subsp. salmonicida, which suggests a high level of interspecies exchange. Genotyping analyses and the antibiotic resistance profiles of the 19 other isolates support the idea that multiple versions of pAB5S9 and pSN254 exist in A. salmonicida subsp. salmonicida. We also identified variants of the pRAS3 plasmid. The present study revealed that A. salmonicida subsp. salmonicida harbors a wide variety of plasmids, which suggests that this ubiquitous bacterium may contribute to the spread of antibiotic resistance genes in the environment.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Doenças dos Peixes/epidemiologia , Infecções por Bactérias Gram-Negativas/veterinária , Plasmídeos/química , Salmão/microbiologia , Aeromonas salmonicida/efeitos dos fármacos , Aeromonas salmonicida/genética , Aeromonas salmonicida/isolamento & purificação , Animais , Antibacterianos/farmacologia , Sequência de Bases , Canadá/epidemiologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Doenças dos Peixes/transmissão , Furunculose/tratamento farmacológico , Furunculose/epidemiologia , Furunculose/microbiologia , Furunculose/transmissão , Transferência Genética Horizontal , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/transmissão , Dados de Sequência Molecular , Plasmídeos/classificação , Plasmídeos/metabolismo , Análise de Sequência de DNA , Tetraciclina/farmacologia
8.
PeerJ ; 12: e17051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560465

RESUMO

Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.


Assuntos
Microbiota , Peixe-Zebra , Animais , Bactérias , Inflamação , Antibacterianos
9.
Microbiol Spectr ; 12(3): e0294323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329329

RESUMO

Teleost gill mucus has a highly diverse microbiota, which plays an essential role in the host's fitness and is greatly influenced by the environment. Arctic char (Salvelinus alpinus), a salmonid well adapted to northern conditions, faces multiple stressors in the Arctic, including water chemistry modifications, that could negatively impact the gill microbiota dynamics related to the host's health. In the context of increasing environmental disturbances, we aimed to characterize the taxonomic distribution of transcriptionally active taxa within the bacterial gill microbiota of Arctic char in the Canadian Arctic in order to identify active bacterial composition that correlates with environmental factors. For this purpose, a total of 140 adult anadromous individuals were collected from rivers, lakes, and bays belonging to five Inuit communities located in four distinct hydrologic basins in the Canadian Arctic (Nunavut and Nunavik) during spring (May) and autumn (August). Various environmental factors were collected, including latitudes, water and air temperatures, oxygen concentration, pH, dissolved organic carbon (DOC), salinity, and chlorophyll-a concentration. The taxonomic distribution of transcriptionally active taxa within the gill microbiota was quantified by 16S rRNA gene transcripts sequencing. The results showed differential bacterial activity between the different geographical locations, explained by latitude, salinity, and, to a lesser extent, air temperature. Network analysis allowed the detection of a potential dysbiosis signature (i.e., bacterial imbalance) in fish gill microbiota from Duquet Lake in the Hudson Strait and the system Five Mile Inlet connected to the Hudson Bay, both showing the lowest alpha diversity and connectivity between taxa.IMPORTANCEThis paper aims to decipher the complex relationship between Arctic char (Salvelinus alpinus) and its symbiotic microbial consortium in gills. This salmonid is widespread in the Canadian Arctic and is the main protein and polyunsaturated fatty acids source for Inuit people. The influence of environmental parameters on gill microbiota in wild populations remains poorly understood. However, assessing the Arctic char's active gill bacterial community is essential to look for potential pathogens or dysbiosis that could threaten wild populations. Here, we concluded that Arctic char gill microbiota was mainly influenced by latitude and air temperature, the latter being correlated with water temperature. In addition, a dysbiosis signature detected in gill microbiota was potentially associated with poor fish health status recorded in these disturbed environments. With those results, we hypothesized that rapid climate change and increasing anthropic activities in the Arctic might profoundly disturb Arctic char gill microbiota, affecting their survival.


Assuntos
Lagos , Microbiota , Animais , Baías , Canadá , Disbiose , Brânquias , RNA Ribossômico 16S/genética , Truta/genética , Truta/metabolismo , Água/metabolismo
10.
Microorganisms ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38930537

RESUMO

Against a backdrop of declining bee colony health, this study aims to gain a better understanding of the impact of an antimicrobial (Fumidil B®, Can-Vet Animal Health Supplies Ltd., Guelph, ON, Canada) and a probiotic (Bactocell®, Lallemand Inc., Montreal, QC, Canada) on bees' microbiota and the health of their colonies after wintering. Therefore, colonies were orally exposed to these products and their combination before wintering in an environmental room. The results show that the probiotic significantly improved the strength of the colonies in spring by increasing the total number of bees and the number of capped brood cells. This improvement translated into a more resilient structure of the gut microbiota, highlighted by a more connected network of interactions between bacteria. Contrastingly, the antimicrobial treatment led to a breakdown in this network and a significant increase in negative interactions, both being hallmarks of microbiota dysbiosis. Although this treatment did not translate into a measurable colony strength reduction, it may impact the health of individual bees. The combination of these products restored the microbiota close to control, but with mixed results for colony performance. More tests will be needed to validate these results, but the probiotic Bactocell® could be administrated as a food supplement before wintering to improve colony recovery in spring.

11.
Nat Commun ; 15(1): 3431, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654015

RESUMO

The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.


Assuntos
Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/microbiologia , Animais , Humanos , Camundongos , Fezes/microbiologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Camundongos Endogâmicos C57BL , Ácidos Graxos Insaturados/metabolismo
12.
Can J Microbiol ; 59(10): 662-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24102219

RESUMO

Next-generation sequencing is revealing the complex interactive networks of host-bacteria interactions, as it is now possible to screen in detail the microbiota harbored by a host. This study investigated the influence of a probiotic treatment on the survival and microbiota of brook charr (Salvelinus fontinalis), focusing on its disturbance of the natural microbiota (dysbiosis). The results indicated that an indigenous probiotic strain (identified as Rhodococcus sp.) colonized neither the fish skin mucus nor the water following the probiotic treatment. Instead, the probiotic strain was detected only in the biofilm of the test tank. Nevertheless, a substantial beneficial effect of the probiotic treatment was observed: the population of the pathogen Flavobacterium psychrophilum decreased in the treated tank water. This study clearly shows that the indigenous strain chosen for the probiotic treatment did not disturb the natural fish skin mucus microbiota but acted directly through the production system to control the growth of the pathogen and, as a consequence, to enhance fish survival.


Assuntos
Doenças dos Peixes/microbiologia , Flavobacterium/fisiologia , Microbiota , Probióticos/administração & dosagem , Truta/microbiologia , Animais , Pele/microbiologia
13.
Front Physiol ; 14: 1172859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485064

RESUMO

The honeybee is an important species for the agri-food and pharmaceutical industries through bee products and crop pollination services. However, honeybee health is a major concern, because beekeepers in many countries are experiencing significant colony losses. This phenomenon has been linked to the exposure of bees to multiple stresses in their environment. Indeed, several biotic and abiotic stressors interact with bees in a synergistic or antagonistic way. Synergistic stressors often act through a disruption of their defense systems (immune response or detoxification). Antagonistic interactions are most often caused by interactions between biotic stressors or disruptive activation of bee defenses. Honeybees have developed behavioral defense strategies and produce antimicrobial compounds to prevent exposure to various pathogens and chemicals. Expanding our knowledge about these processes could be used to develop strategies to shield bees from exposure. This review aims to describe current knowledge about the exposure of honeybees to multiple stresses and the defense mechanisms they have developed to protect themselves. The effect of multi-stress exposure is mainly due to a disruption of the immune response, detoxification, or an excessive defense response by the bee itself. In addition, bees have developed defenses against stressors, some behavioral, others involving the production of antimicrobials, or exploiting beneficial external factors.

14.
Microorganisms ; 11(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838503

RESUMO

Environmental stressors can disrupt the relationship between the microbiota and the host and lead to the loss of its functions. Among them, bacterial infection caused by Aeromonas salmonicida, the causative agent of furunculosis, results in high mortality in salmonid aquaculture. Here, rainbow trout were exposed to A. salmonicida achromogenes and its effects on the taxonomic composition and structure of the microbiota was assessed on different epithelia (gills, skin, and caudal fin) at 6 and 72 h post-infection (hpi) using the V1-V3 region of the 16S rRNA sequencing. Moreover, the infection by the pathogen and immune gene responses were evaluated in the head kidney by qPCR. Our results suggested that α-diversity was highly diverse but predominated by a few taxa while ß-diversity was affected very early by infection in the gills after 6 h, subsequently affecting the microbiota of the skin and caudal fin. A dysbiosis of the microbiota and an increase in genera known to be opportunistic pathogens (Aeromonas, Pseudomonas) were also identified. Furthermore, an increase in pro-inflammatory cytokines and virulence protein array (vapa) was observed in trout head kidney as soon as 6 hpi and remained elevated until 72 hpi, while the anti-inflammatory genes seemed repressed. This study suggests that the infection by A. salmonicida achromogenes can alter fish microbiota of gills in the few hours post-infection. This result can be useful to develop a non-invasive technique to prevent disease outbreak in aquaculture.

15.
Front Microbiol ; 14: 1221728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664118

RESUMO

The larvae of the Black Soldier Fly (Hermetia illucens) provide numerous ecological benefits, leading to significant commercial advancements. These benefits include the bioconversion of low-value waste into high-value feed and soil amendments. Understanding how the bacterial and eukaryotic microbiota communities affect host performance becomes vital for the optimization and specialization of industrial-scale rearing. This study investigates H. illucens-associated microbiota taxonomic composition and dynamics across the developmental cycle (eggs, neonates, larvae, prepupae, and imago X0 to second generation X1) when reared on two substrates: (i) plant-based (Housefly Gainesville diet) and (ii) animal-based (poultry hatchery waste). By using the 16S gene amplicon metataxonomic approach, we found that the results revealed that bacterial microbiota inherited from parents reared on a different substrate may have induced dysbiosis in the progeny. Specifically, the interaction networks of individuals reared on hatchery waste showed a high prevalence of negative interactions and low connectivity. Proteobacteria (39-92%), Firmicutes (4-39%), Bacteroidota (1-38%), and Actinobacteria (1-33%). In animal feed-reared individuals, Firmicutes reached the highest relative abundance (10-80%), followed by Proteobacteria (6-55%), Actinobacteria (1-31%), and Bacteroidota (0-22%). The rearing substrate was the main driver of microbiota composition, while the developmental stage influenced only the whole individual's bacterial microbiota composition. Gut regions were associated with distinct bacterial composition and richness, with diversity decreasing along the digestive tract. For the first time, microeukaryotes of the microbiota other than Fungi were investigated using 18S genetic marker amplicon sequencing with novel blocking primers specific to the Black Soldier Fly. Microeukaryotes are a neglected part of multitrophic microbiota communities that can have similar effects on their hosts as bacterial microbiota. Microeukaryotes from seven orders were identified in black soldier flies, including potential pathogens (e.g., Aplicomplexa group). Nucletmycea were the dominant class throughout development, followed by Holozoa and Stramenophiles. The eukaryote microbiota was structured by developmental stages but not by gut regions. Insights from this study are a stepping stone toward the microbiological optimization of black soldier flies for industrial rearing, highlighting how a synthetic microbiota assembly should be tailored to the rearing environment of the larvae at a targeted developmental stage.

16.
Sci Rep ; 13(1): 2396, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765081

RESUMO

Black soldier fly larvae (BSF, Hermetia illucens) have gained much attention for their industrial use as biowaste recyclers and as a new source of animal proteins. The functional effect that microbiota has on insect health and growth performance remains largely unknown. This study clarifies the role of microbiota in BSF ontogeny by investigating the differential genomic expression of BSF larvae in axenic conditions (i.e., germfree) relative to non-axenic (conventional) conditions. We used RNA-seq to measure differentially expressed transcripts between axenic and conventional condition using DESeq2 at day 4, 12 and 20 post-hatching. Gene expression was significantly up or down-regulated for 2476 transcripts mapped in gene ontology functions, and axenic larvae exhibited higher rate of down-regulated functions. Up-regulated microbiota-dependant transcriptional gene modules included the immune system, the lipid metabolism, and the nervous system. Expression profile showed a shift in late larvae (day 12 and 20), exposing a significant temporal effect on gene expression. These results provide the first evidence of host functional genes regulated by microbiota in the BSF larva, further demonstrating the importance of host-microbiota interactions on host ontology and health. These results open the door to optimization of zootechnical properties in alternative animal protein production, biowaste revalorization and recycling.


Assuntos
Dípteros , Microbiota , Animais , Larva , Ração Animal/análise , Dípteros/fisiologia , Microbiota/genética , Metabolismo dos Lipídeos
17.
Microbiol Spectr ; : e0275522, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724869

RESUMO

A number of key factors can structure the gut microbiota of fish such as environment, diet, health state, and genotype. Mesonauta festivus, an Amazonian cichlid, is a relevant model organism to study the relative contribution of these factors on the community structure of fish gut microbiota. M. festivus has well-studied genetic populations and thrives in rivers with drastically divergent physicochemical characteristics. Here, we collected 167 fish from 12 study sites and used 16S and 18S rRNA metabarcoding approaches to characterize the gut microbiome structure of M. festivus. These data sets were analyzed in light of the host fish genotypes (genotyping-by-sequencing) and an extensive characterization of environmental physico-chemical parameters. We explored the relative contribution of environmental dissimilarity, the presence of parasitic taxa, and phylogenetic relatedness on structuring the gut microbiota. We documented occurrences of Nyctotherus sp. infecting a fish and linked its presence to a dysbiosis of the host gut microbiota. Moreover, we detected the presence of helminths which had a minor impact on the gut microbiota of their host. In addition, our results support a higher impact of the phylogenetic relatedness between fish rather than environmental similarity between sites of study on structuring the gut microbiota for this Amazonian cichlid. Our study in a heterogeneous riverscape integrates a wide range of factors known to structure fish gut microbiomes. It significantly improves understanding of the complex relationship between fish, their parasites, their microbiota, and the environment. IMPORTANCE The gut microbiota is known to play important roles in its host immunity, metabolism, and comportment. Its taxonomic composition is modulated by a complex interplay of factors that are hard to study simultaneously in natural systems. Mesonauta festivus, an Amazonian cichlid, is an interesting model to simultaneously study the influence of multiple variables on the gut microbiota. In this study, we explored the relative contribution of the environmental conditions, the presence of parasitic infections, and the genotype of the host on structuring the gut microbiota of M. festivus in Amazonia. Our results highlighted infections by a parasitic ciliate that caused a disruption of the gut microbiota and by parasitic worms that had a low impact on the microbiota. Finally, our results support a higher impact of the genotype than the environment on structuring the microbiota for this fish. These findings significantly improve understanding of the complex relationship among fish, their parasites, their microbiota, and the environment.

18.
Microbiol Spectr ; 11(3): e0479322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199657

RESUMO

The Amazon River basin sustains dramatic hydrochemical gradients defined by three water types: white, clear, and black waters. In black water, important loads of allochthonous humic dissolved organic matter (DOM) result from the bacterioplankton degradation of plant lignin. However, the bacterial taxa involved in this process remain unknown, since Amazonian bacterioplankton has been poorly studied. Its characterization could lead to a better understanding of the carbon cycle in one of the Earth's most productive hydrological systems. Our study characterized the taxonomic structure and functions of Amazonian bacterioplankton to better understand the interplay between this community and humic DOM. We conducted a field sampling campaign comprising 15 sites distributed across the three main Amazonian water types (representing a gradient of humic DOM), and a 16S rRNA metabarcoding analysis based on bacterioplankton DNA and RNA extracts. Bacterioplankton functions were inferred using 16S rRNA data in combination with a tailored functional database from 90 Amazonian basin shotgun metagenomes from the literature. We discovered that the relative abundances of fluorescent DOM fractions (humic-, fulvic-, and protein-like) were major drivers of bacterioplankton structure. We identified 36 genera for which the relative abundance was significantly correlated with humic DOM. The strongest correlations were found in the Polynucleobacter, Methylobacterium, and Acinetobacter genera, three low abundant but omnipresent taxa that possessed several genes involved in the main steps of the ß-aryl ether enzymatic degradation pathway of diaryl humic DOM residues. Overall, this study identified key taxa with DOM degradation genomic potential, the involvement of which in allochthonous Amazonian carbon transformation and sequestration merits further investigation. IMPORTANCE The Amazon basin discharge carries an important load of terrestrially derived dissolved organic matter (DOM) to the ocean. The bacterioplankton from this basin potentially plays important roles in transforming this allochthonous carbon, which has consequences on marine primary productivity and global carbon sequestration. However, the structure and function of Amazonian bacterioplanktonic communities remain poorly studied, and their interactions with DOM are unresolved. In this study, we (i) sampled bacterioplankton in all the main Amazon tributaries, (ii) combined information from the taxonomic structure and functional repertory of Amazonian bacterioplankton communities to understand their dynamics, (iii) identified the main physicochemical parameters shaping bacterioplanktonic communities among a set of >30 measured environmental parameters, and (iv) characterized how bacterioplankton structure varies according to the relative abundance of humic compounds, a by-product from the bacterial degradation process of allochthonous DOM.


Assuntos
Matéria Orgânica Dissolvida , Água , RNA Ribossômico 16S/genética , Organismos Aquáticos , Carbono/análise
19.
J Bacteriol ; 194(3): 722-3, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22247525

RESUMO

Aeromonas salmonicida is an important fish pathogen, mainly of salmonids. This bacterium causes a disease named furunculosis, which is particularly detrimental for the aquaculture industry. Here, we present the draft genome sequence of A. salmonicida 01-B526, a strain isolated from a brook trout that is more virulent than A. salmonicida reference strain A449, for which a genome sequence is available.


Assuntos
Aeromonas salmonicida/genética , Doenças dos Peixes/microbiologia , Genoma Bacteriano , Infecções por Bactérias Gram-Negativas/veterinária , Truta/microbiologia , Aeromonas salmonicida/isolamento & purificação , Animais , Sequência de Bases , Infecções por Bactérias Gram-Negativas/microbiologia , Dados de Sequência Molecular
20.
Mol Biol Evol ; 28(9): 2461-70, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21498605

RESUMO

Sex-ratio drive, which has been documented in several Drosophila species, is induced by X-linked segregation distorters. Contrary to Mendel's law of independent assortment, the sex-ratio chromosome (X(SR)) is inherited by more than half the offspring of carrier males, resulting in a female-biased sex ratio. This segregation advantage allows X(SR) to spread in populations, even if it is not beneficial for the carriers. In the cosmopolitan species D. simulans, the Paris sex-ratio is caused by recently emerged selfish X(SR) chromosomes. These chromosomes have triggered an intragenomic conflict, and their propagation has been halted over a large area by the evolution of complete drive suppression. Previous molecular population genetics analyses revealed a selective sweep indicating that the invasion of X(SR) chromosomes was very recent in Madagascar (likely less than 100 years ago). Here, we show that X(SR) chromosomes are now declining at this location as well as in Mayotte and Kenya. Drive suppression is complete in the three populations, which display little genetic differentiation and share swept haplotypes, attesting to a common and very recent ancestry of the X(SR) chromosomes. Patterns of DNA sequence variation also indicate a fitness cost of the segmental duplication involved in drive. The data suggest that X(SR) chromosomes started declining first on the African continent, then in Mayotte, and finally in Madagascar and strongly support a scenario of rapid cycling of X chromosomes. Once drive suppression has evolved, standard X(ST) chromosomes locally replace costly X(SR) chromosomes in a few decades.


Assuntos
Drosophila/genética , Evolução Molecular , Razão de Masculinidade , Cromossomo X/genética , Animais , Demografia , Genes Duplicados , Haplótipos , Masculino , Meiose/genética , Modelos Genéticos , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA