Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(16): 9948-9961, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33861224

RESUMO

The aggregation of small molecules in aqueous solution is known to be influenced by the ionic strength of the medium; however, the role played by the identity of salt in the phenomenon of small molecule aggregation is rarely investigated. In the present contribution, we have investigated the effect of counter-anions on the aggregation of a popular cationic amyloid sensing probe, Thioflavin-T (ThT), by taking six different anions, viz. chloride, bromide, acetate, iodide, tetrafluoroborate, and perchlorate. Our results clearly indicate that it is not the ionic strength of the medium which solely controls aggregation of small molecules but distinct ions behave distinctly with regard to the organization. In fact, distinct ion effects play a major role in the salt induced organization of fluorophores. Using detailed steady-state emission, time-resolved emission, and ground-state absorption measurements, the optical properties of salt induced aggregates of ThT have been characterized. We have rationalized our observations on the basis of the theory of matching water affinity, which suggests that the matching free hydration energy is a critical aspect for the formation of contact ion pairs, which eventually results in aggregation. In brief, a larger sized anion, perchlorate, has a lower free energy of hydration and forms a suitable contact ion pair, with a larger organic cation, ThT, having weaker hydration. This contact ion-pair formation subsequently leads to the formation of an aggregate assembly which is found to be emissive in nature. Therefore, it is possible to induce aggregation of ThT by selecting the right counterion with the appropriate size, which may help us to evaluate the false positive signals when high ionic strength and specific counterions are present in the sensing matrix.

2.
Chemistry ; 25(8): 2035-2042, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30467905

RESUMO

Devising sensors for the perrhenate anion in aqueous media is extremely challenging, and has seldom been reported in the literature. Herein, we report a fluorescence turn-on sensor for the perrhenate anion in aqueous media based on the aggregation-induced emission of a popular ultrafast molecular rotor dye, Thioflavin-T. The selective response towards the perrhenate anion has been rationalized in terms of matching water affinity, with the weakly hydrated perrhenate anion spontaneously forming a contact ion pair with the weakly hydrated ultrafast molecule-rotor-based organic cation, Thioflavin-T, which in turn leads to an aggregate assembly that provides a fluorescence turn-on response towards perrhenate. The sensing response of Thioflavin-T has been found to be quite selective towards the perrhenate anion when tested against anions that are ubiquitously present in the environment, such as chloride, nitrate, and sulfate anions. The formation of self-assembled Thioflavin-T aggregates has also been investigated by time-resolved emission and temperature-dependent measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA