Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 31(23): 6289-97, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25973738

RESUMO

We address the rheology of assemblies of surfactant-decorated silica nanoparticles irreversibly adsorbed at the gas/liquid interface. Positively charged surfactant molecules (such as CTAB) bind to silica nanoparticle surfaces, and the resulting particle-surfactant complexes adsorb at gas/liquid interfaces. The surfactant molecules control the wettability of such decorated nanoparticles and their adsorption. The interparticle forces can be tuned by changing the surfactant concentration Cs. Increasing Cs, in addition to a decrease of the particles wettability, leads to an increase of the area fraction of particles at the interface. Oscillatory shear measurements (strain- and frequency-sweep) have been performed. Here, we explore the effect of the surfactant concentration Cs. At high enough Cs, the interface is highly packed, and an overall solidlike response is observed, with 2D glass properties.

2.
Soft Matter ; 10(36): 7045-50, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24954112

RESUMO

Understanding the adsorption dynamics of soft microgel particles is a key step in designing such particles for potential applications as stimuli-responsive Pickering stabilizers for foams or emulsions. In this study we experimentally determine an equation of state (EOS) for poly (N-isopropylacrylamide) (PNIPAM) microgel particles adsorbed onto an air-water interface using a Langmuir film balance. We detect a finite surface pressure at very low surface concentration of particles, for which standard theories based on hard disk models predict negligible pressures, implying that the particles must deform strongly upon adsorption to the interface. Furthermore, we study the evolution of the surface pressure due to the adsorption of PNIPAM particles as a function of time using pendant drop tensiometry. The equation of state determined in the equilibrium measurements allows us to extract the adsorbed amount as a function of time. We find a mixed-kinetic adsorption that is initially controlled by the diffusion of particles towards the interface. At later stages, a slow exponential relaxation indicates the presence of a coverage-dependent adsorption barrier related to crowding of particles at the interface.

3.
ACS Biomater Sci Eng ; 10(5): 3378-3386, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38517700

RESUMO

The presence of colloidal scaffolds composed of proteins and hyaluronic acid engenders unique viscous and elastic properties to the synovial fluid (SF). While the elastic resistance of SF due to the presence of such nanoscale structures provides the load-bearing capacity, the viscous nature enables fluidity of the joints during the movements to minimize the wear and tear of the adjacent muscle, cartilage, or bone tissues. It is well-known that the hypoxic conditions at the bone joints often increase the lactic acid (LA) concentration due to the occurrence of excess anaerobic respiration during either hyperactivity or arthritic conditions. The present study uncovers that in such a scenario, beyond a critical loading of LA, the colloidal nanoscaffolds of SF break down to precipitate higher molecular weight (MW) proteins and hyaluronic acid (HA). Subsequently, the viscosity and elasticity of SF reduce drastically to manifest a fluid that has reduced load bearing and wear and tear resistance capacity. Interestingly, the study also suggests that a heathy SF is a viscoelastic fluid with a mild Hookean elasticity and non-Newtonian fluidity, which eventually transforms into a viscous watery liquid in the presence of a higher loading of LA. We employ this knowledge to biosynthesize an artificial SF that emulates the characteristics of the real one. Remarkably, the spatiotemporal microscopic images uncover that even for the artificial SF, a dynamic cross-linking of the high MW proteins and HA takes place before precipitating out of the same from the artificial SF matrix, emulating the real one. Control experiments suggest that this phenomenon is absent in the case when LA is mixed with either pure HA or proteins. The experiments unfold the specific role of LA in the destruction of colloidal nanoscaffolds of synovia, which is an extremely important requirement for the biosynthesis and translation of artificial synovial fluid.


Assuntos
Coloides , Ácido Hialurônico , Ácido Láctico , Reologia , Líquido Sinovial , Líquido Sinovial/química , Líquido Sinovial/metabolismo , Coloides/química , Viscosidade , Ácido Hialurônico/química , Ácido Láctico/química , Ácido Láctico/metabolismo , Humanos , Elasticidade
4.
ACS Appl Bio Mater ; 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969851

RESUMO

Mucus plays an important role in the protection of the epithelial cells from various pathogens and low pH environments besides helping in the absorption of nutrients. Alteration of the rheology of the mucus layer leads to various disease conditions such as cystic fibrosis, Crohn's disease, and gastric ulcers, among others. Importantly, mucus consists of various mucins along with proteins such as immunoglobulin, lysozyme, and albumin. In the present study, we explore the effect of pH on the interactions between bovine serum albumin (BSA) and porcine gastric mucins using diffusing wave spectroscopy (DWS). The study unveils that BSA actively binds with mucin to form mucin-BSA complexes, which is largely driven by electrostatic interactions. Interestingly, such physical interactions significantly alter the microrheology of these biomaterials, which is indicated by a reduction in the diffusivity of tracer particles in DWS. An array of DWS experiments suggests that the interaction between mucin and BSA is the highest at pH 7.4 and the least at pH 3. Further analyses using atomic force microscopy showed the formation of a compact cross-linked colloidal network of mucin-BSA complexes at pH 7.4, which is the main reason for the reduction in the diffusivity of the tracer particles in DWS. Furthermore, the circular dichroism analysis revealed that the secondary structures of mucin-BSA complexes are markedly different from those of only mucin at pH 7.4. Importantly, such a difference has not been observed at pH 3, which confirms that largely electrostatic interactions drive the formation of mucin-BSA complexes at neutral pH. In such a scenario, the presence of Ca2+ ions is also found to facilitate bridging between BSA molecules, which is also reflected in the microrheology of the suspension of BSA-mucin complexes.

5.
Food Res Int ; 123: 208-216, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31284970

RESUMO

Oral processing of solid foods is an extremely dynamic and complicated activity that involves multiple processes in tandem such as comminution, mixing, dilution, hydration and enzymatic breakdown that gradually transform the food from a morsel or a bite to a bolus that is ready for swallowing. It is hypothesised that just after "first bite" and initial particle reduction and hydration of solid brittle foods, the response to deformation of food particles is analogous to studies on the flowability and cohesion of wetted powders, which are effectively characterised using a Ring Shear Tester (RST). We examine this hypothesis and determine whether the RST measures properties of solid snack foods (potato chips or crisps, PCs) that are relevant to their dynamic sensory response, which includes capturing the effect of hydration on comminuted PCs. The RST is found to differentiate PCs obtained from different manufacturing sources (e.g. baked versus fried), and its measurements of cohesion and friction can be considered in context of the structure and composition of the PCs as well as oral processing. Remarkably, RST measurements for this small set of PC samples correlate with several sensory attributes that arise during mastication, which includes Sharpness and Ease of Clearance. This study highlights the potential of the RST as a new tool for oral processing research.


Assuntos
Mastigação/fisiologia , Lanches , Solanum tuberosum , Adulto , Estudos de Avaliação como Assunto , Feminino , Tecnologia de Alimentos , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Modelos Biológicos , Modelos Teóricos , Paladar
6.
Sci Rep ; 8(1): 5802, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643478

RESUMO

Mucus is characterized by multiple levels of assembly at different length scales which result in a unique set of rheological (flow) and mechanical properties. These physical properties determine its biological function as a highly selective barrier for transport of water and nutrients, while blocking penetration of pathogens and foreign particles. Altered integrity of the mucus layer in the small intestine has been associated with a number of gastrointestinal tract pathologies such as Crohn's disease and cystic fibrosis. In this work, we uncover an intricate hierarchy of intestinal mucin (Muc2) assembly and show how complex rheological properties emerge from synergistic interactions between mucin glycoproteins, non-mucin proteins, and Ca2+. Using a novel method of mucus purification, we demonstrate the mechanism of assembly of Muc2 oligomers into viscoelastic microscale domains formed via hydrogen bonding and Ca2+-mediated links, which require the joint presence of Ca2+ ions and non-mucin proteins. These microscale domains aggregate to form a heterogeneous yield stress gel-like fluid, the macroscopic rheological properties of which are virtually identical to that of native intestinal mucus. Through proteomic analysis, we short-list potential protein candidates implicated in mucin assembly, thus paving the way for identifying the molecules responsible for the physiologically critical biophysical properties of mucus.


Assuntos
Cálcio/metabolismo , Dissulfetos , Géis/metabolismo , Ligação de Hidrogênio , Mucinas/metabolismo , Proteínas/química , Proteínas/metabolismo , Fenômenos Químicos
7.
Adv Colloid Interface Sci ; 222: 215-27, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25288385

RESUMO

Soft microgel particles inherently possess qualities of both polymers as well as particles. We review the similarities and differences between soft microgel particles and stiff colloids at fluid-fluid interfaces. We compare two fundamental aspects of particle-laden interfaces namely the adsorption kinetics and the interactions between adsorbed particles. Although it is well established that the transport of both hard particles and microgels to the interface is driven by diffusion, the analysis of the adsorption kinetics needs reconsideration and a proper equation of state relating the surface pressure to the adsorbed mass should be used. We review the theoretical and experimental investigations into the interactions of particles at the interface. The rheology of the interfacial layers is intimately related to the interactions, and the differences between hard particles and microgels become pronounced. The assembly of particles into the layer is another distinguishing factor that separates hard particles from soft microgel particles. Microgels deform substantially upon adsorption and the stability of a microgel-stabilized emulsion depends on the conformational changes triggered by external stimuli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA