Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nucleic Acids Res ; 49(3): 1737-1748, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33503246

RESUMO

The Ebola virus is a deadly human pathogen responsible for several outbreaks in Africa. Its genome encodes the 'large' L protein, an essential enzyme that has polymerase, capping and methyltransferase activities. The methyltransferase activity leads to RNA co-transcriptional modifications at the N7 position of the cap structure and at the 2'-O position of the first transcribed nucleotide. Unlike other Mononegavirales viruses, the Ebola virus methyltransferase also catalyses 2'-O-methylation of adenosines located within the RNA sequences. Herein, we report the crystal structure at 1.8 Å resolution of the Ebola virus methyltransferase domain bound to a fragment of a camelid single-chain antibody. We identified structural determinants and key amino acids specifically involved in the internal adenosine-2'-O-methylation from cap-related methylations. These results provide the first high resolution structure of an ebolavirus L protein domain, and the framework to investigate the effects of epitranscriptomic modifications and to design possible antiviral drugs against the Filoviridae family.


Assuntos
Ebolavirus/enzimologia , Metiltransferases/química , Proteínas Virais/química , Domínio Catalítico , Cristalografia por Raios X , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica em alfa-Hélice , Anticorpos de Domínio Único/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Nature ; 523(7562): 555-60, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26200339

RESUMO

Bacteria share their ecological niches with other microbes. The bacterial type VI secretion system is one of the key players in microbial competition, as well as being an important virulence determinant during bacterial infections. It assembles a nano-crossbow-like structure in the cytoplasm of the attacker cell that propels an arrow made of a haemolysin co-regulated protein (Hcp) tube and a valine-glycine repeat protein G (VgrG) spike and punctures the prey's cell wall. The nano-crossbow is stably anchored to the cell envelope of the attacker by a membrane core complex. Here we show that this complex is assembled by the sequential addition of three type VI subunits (Tss)-TssJ, TssM and TssL-and present a structure of the fully assembled complex at 11.6 Å resolution, determined by negative-stain electron microscopy. With overall C5 symmetry, this 1.7-megadalton complex comprises a large base in the cytoplasm. It extends in the periplasm via ten arches to form a double-ring structure containing the carboxy-terminal domain of TssM (TssMct) and TssJ that is anchored in the outer membrane. The crystal structure of the TssMct-TssJ complex coupled to whole-cell accessibility studies suggest that large conformational changes induce transient pore formation in the outer membrane, allowing passage of the attacking Hcp tube/VgrG spike.


Assuntos
Sistemas de Secreção Bacterianos , Proteínas de Escherichia coli/química , Escherichia coli/química , Lipopeptídeos/química , Proteínas de Membrana/química , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/química , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Citoplasma/química , Citoplasma/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Lipopeptídeos/biossíntese , Proteínas de Membrana/biossíntese , Microscopia Eletrônica , Modelos Moleculares , Periplasma/química , Periplasma/metabolismo , Porosidade , Estrutura Terciária de Proteína , Subunidades Proteicas/biossíntese , Subunidades Proteicas/química
3.
Nature ; 512(7514): 276-81, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25119048

RESUMO

Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 Å resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 Å constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.


Assuntos
Receptores 5-HT3 de Serotonina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Neurotransmissores/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo
4.
J Biol Chem ; 291(26): 13846-54, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129274

RESUMO

Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe(229) and Phe(279) of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe(279) Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe(279) In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe(279), whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe(229).


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/química , Receptores de Interleucina-6/imunologia , Animais , Camelus , Humanos , Interleucina-6/química , Interleucina-6/imunologia , Camundongos , Estrutura Quaternária de Proteína
5.
Proc Natl Acad Sci U S A ; 110(15): E1371-9, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530214

RESUMO

Lactococcal phages belong to a large family of Siphoviridae and infect Lactococcus lactis, a gram-positive bacterium used in commercial dairy fermentations. These phages are believed to recognize and bind specifically to pellicle polysaccharides covering the entire bacterium. The phage TP901-1 baseplate, located at the tip of the tail, harbors 18 trimeric receptor binding proteins (RBPs) promoting adhesion to a specific lactococcal strain. Phage TP901-1 adhesion does not require major conformational changes or Ca(2+), which contrasts other lactococcal phages. Here, we produced and characterized llama nanobodies raised against the purified baseplate and the Tal protein of phage TP901-1 as tools to dissect the molecular determinants of phage TP901-1 infection. Using a set of complementary techniques, surface plasmon resonance, EM, and X-ray crystallography in a hybrid approach, we identified binders to the three components of the baseplate, analyzed their affinity for their targets, and determined their epitopes as well as their functional impact on TP901-1 phage infectivity. We determined the X-ray structures of three nanobodies in complex with the RBP. Two of them bind to the saccharide binding site of the RBP and are able to fully neutralize TP901-1 phage infectivity, even after 15 passages. These results provide clear evidence for a practical use of nanobodies in circumventing lactococcal phages viral infection in dairy fermentation.


Assuntos
Lactococcus lactis/virologia , Anticorpos de Domínio Único/química , Siphoviridae/fisiologia , Proteínas da Cauda Viral/química , Animais , Especificidade de Anticorpos , Sítios de Ligação , Camelídeos Americanos , Cristalografia por Raios X , Epitopos/química , Fermentação , Microscopia Eletrônica , Modelos Moleculares , Conformação Molecular , Nanotecnologia , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
6.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 113-122, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265877

RESUMO

Phenuiviridae nucleoprotein is the main structural and functional component of the viral cycle, protecting the viral RNA and mediating the essential replication/transcription processes. The nucleoprotein (N) binds the RNA using its globular core and polymerizes through the N-terminus, which is presented as a highly flexible arm, as demonstrated in this article. The nucleoprotein exists in an `open' or a `closed' conformation. In the case of the closed conformation the flexible N-terminal arm folds over the RNA-binding cleft, preventing RNA adsorption. In the open conformation the arm is extended in such a way that both RNA adsorption and N polymerization are possible. In this article, single-crystal X-ray diffraction and small-angle X-ray scattering were used to study the N protein of Toscana virus complexed with a single-chain camelid antibody (VHH) and it is shown that in the presence of the antibody the nucleoprotein is unable to achieve a functional assembly to form a ribonucleoprotein complex.


Assuntos
Nucleoproteínas , Vírus da Febre do Flebótomo Napolitano , Nucleoproteínas/química , Vírus da Febre do Flebótomo Napolitano/genética , Vírus da Febre do Flebótomo Napolitano/metabolismo , Proteínas do Nucleocapsídeo/química , Modelos Moleculares , RNA Viral/química , RNA Viral/metabolismo
7.
Nat Struct Mol Biol ; 13(1): 85-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16327804

RESUMO

Lactococcus lactis is a Gram-positive bacterium used extensively by the dairy industry for the manufacture of fermented milk products. The double-stranded DNA bacteriophage p2 infects specific L. lactis strains using a receptor-binding protein (RBP) located at the tip of its noncontractile tail. We have solved the crystal structure of phage p2 RBP, a homotrimeric protein composed of three domains: the shoulders, a beta-sandwich attached to the phage; the neck, an interlaced beta-prism; and the receptor-recognition head, a seven-stranded beta-barrel. We used the complex of RBP with a neutralizing llama VHH domain to identify the receptor-binding site. Structural similarity between the recognition-head domain of phage p2 and those of adenoviruses and reoviruses, which invade mammalian cells, suggests that these viruses, despite evolutionary distant targets, lack of sequence similarity and the different chemical nature of their genomes (DNA versus RNA), might have a common ancestral gene.


Assuntos
Bacteriófago P2/química , Bacteriófago P2/genética , Lactococcus lactis/virologia , Mamíferos/virologia , Proteínas Virais/química , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Bacteriófago P2/metabolismo , Bacteriófago P2/ultraestrutura , Sítios de Ligação , Cristalografia por Raios X , Internet , Microscopia Imunoeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Proteínas Virais/metabolismo
8.
Anal Biochem ; 401(1): 74-80, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20175983

RESUMO

G protein-coupled receptors (GPCRs) represent approximately 3% of the human proteome. They are involved in a large number of diverse processes and, therefore, are the most prominent class of pharmacological targets. Besides rhodopsin, X-ray structures of classical GPCRs have only recently been resolved, including the beta1 and beta2 adrenergic receptors and the A2A adenosine receptor. This lag in obtaining GPCR structures is due to several tedious steps that are required before beginning the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. With the aim to obtain active membrane receptors for functional and crystallization studies, we recently reported a screen of expression conditions for approximately 100 GPCRs in Escherichia coli, providing large amounts of inclusion bodies, a prerequisite for the subsequent refolding step. Here, we report a novel artificial chaperone-assisted refolding procedure adapted for the GPCR inclusion body refolding, followed by protein purification and characterization. The refolding of two selected targets, the mouse cannabinoid receptor 1 (muCB1R) and the human parathyroid hormone receptor 1 (huPTH1R), was achieved from solubilized receptors using detergent and cyclodextrin as protein folding assistants. We could demonstrate excellent affinity of both refolded and purified receptors for their respective ligands. In conclusion, this study suggests that the procedure described here can be widely used to refold GPCRs expressed as inclusion bodies in E. coli.


Assuntos
Escherichia coli/metabolismo , Receptor CB1 de Canabinoide/química , Receptor Tipo 1 de Hormônio Paratireóideo/química , Animais , Ciclodextrinas/química , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Ligação Proteica , Dobramento de Proteína , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Nature ; 424(6950): 783-8, 2003 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-12917687

RESUMO

Amyloid diseases are characterized by an aberrant assembly of a specific protein or protein fragment into fibrils and plaques that are deposited in various organs and tissues, often with serious pathological consequences. Non-neuropathic systemic amyloidosis is associated with single point mutations in the gene coding for human lysozyme. Here we report that a single-domain fragment of a camelid antibody raised against wild-type human lysozyme inhibits the in vitro aggregation of its amyloidogenic variant, D67H. Our structural studies reveal that the epitope includes neither the site of mutation nor most residues in the region of the protein structure that is destabilized by the mutation. Instead, the binding of the antibody fragment achieves its effect by restoring the structural cooperativity characteristic of the wild-type protein. This appears to occur at least in part through the transmission of long-range conformational effects to the interface between the two structural domains of the protein. Thus, reducing the ability of an amyloidogenic protein to form partly unfolded species can be an effective method of preventing its aggregation, suggesting approaches to the rational design of therapeutic agents directed against protein deposition diseases.


Assuntos
Amiloidose/imunologia , Camelídeos Americanos/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Muramidase/química , Muramidase/imunologia , Animais , Dicroísmo Circular , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Muramidase/genética , Mutação/genética , Desnaturação Proteica , Estrutura Terciária de Proteína , Difração de Raios X
10.
Anal Biochem ; 386(2): 147-55, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19150325

RESUMO

G-protein-coupled receptors (GPCRs) represent approximately 3% of human proteome and the most prominent class of pharmacological targets. Despite their important role in many functions, only the X-ray structures of rhodopsin, and more recently of the beta(1)- and beta(2)-adrenergic receptors, have been resolved. Structural studies of GPCRs require that several tedious preliminary steps be fulfilled before setting up the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. Here we report on screening expression conditions of approximately 100 GPCRs in Escherichia coli with a view to obtain large amounts of inclusion bodies, a prerequisite to the subsequent refolding step. A set of optimal conditions, including appropriate vectors (Gateway pDEST17oi), strain (C43), and fermentation at high optical density, define the best first instance choice. Beyond this minimal setting, however, the rate of success increases significantly with the number of conditions tested. In contrast with experiments based on a single GPCR expression, our approach provides statistically significant results and indicates that up to 40% of GPCRs can be expressed as inclusion bodies in quantities sufficient for subsequent refolding, solubilization, and purification.


Assuntos
Escherichia coli/genética , Corpos de Inclusão/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Clonagem Molecular , Escherichia coli/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Mamíferos , Engenharia de Proteínas/métodos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/isolamento & purificação
11.
Nat Commun ; 9(1): 429, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382829

RESUMO

Type IX secretion system (T9SS), exclusively present in the Bacteroidetes phylum, has been studied mainly in Flavobacterium johnsoniae and Porphyromonas gingivalis. Among the 18 genes, essential for T9SS function, a group of four, porK-N (P. gingivalis) or gldK-N (F. johnsoniae) belongs to a co-transcribed operon that expresses the T9SS core membrane complex. The central component of this complex, PorM (or GldM), is anchored in the inner membrane by a trans-membrane helix and interacts through the outer membrane PorK-N complex. There is a complete lack of available atomic structures for any component of T9SS, including the PorKLMN complex. Here we report the crystal structure of the GldM and PorM periplasmic domains. Dimeric GldM and PorM, each contain four domains of ~180-Å length that span most of the periplasmic space. These and previously reported results allow us to propose a model of the T9SS core membrane complex as well as its functional behavior.


Assuntos
Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos/química , Periplasma/química , Animais , Camelídeos Americanos , Escherichia coli , Flavobacterium , Porphyromonas gingivalis , Conformação Proteica
12.
Front Immunol ; 8: 867, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824615

RESUMO

The activity of tumor necrosis factor (TNF), a cytokine involved in inflammatory pathologies, can be inhibited by antibodies or trap molecules. Herein, llama-derived variable heavy-chain domains of heavy-chain antibody (VHH, also called Nanobodies™) were generated for the engineering of bivalent constructs, which antagonize the binding of TNF to its receptors with picomolar potencies. Three monomeric VHHs (VHH#1, VHH#2, and VHH#3) were characterized in detail and found to bind TNF with sub-nanomolar affinities. The crystal structures of the TNF-VHH complexes demonstrate that VHH#1 and VHH#2 share the same epitope, at the center of the interaction area of TNF with its TNFRs, while VHH#3 binds to a different, but partially overlapping epitope. These structures rationalize our results obtained with bivalent constructs in which two VHHs were coupled via linkers of different lengths. Contrary to conventional antibodies, these bivalent Nanobody™ constructs can bind to a single trimeric TNF, thus binding with avidity and blocking two of the three receptor binding sites in the cytokine. The different mode of binding to antigen and the engineering into bivalent constructs supports the design of highly potent VHH-based therapeutic entities.

13.
Front Immunol ; 8: 884, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28871249

RESUMO

The heterodimeric cytokine interleukin (IL) 23 comprises the IL12-shared p40 subunit and an IL23-specific subunit, p19. Together with IL12 and IL27, IL23 sits at the apex of the regulatory mechanisms shaping adaptive immune responses. IL23, together with IL17, plays an important role in the development of chronic inflammation and autoimmune inflammatory diseases. In this context, we generated monovalent antihuman IL23 variable heavy chain domain of llama heavy chain antibody (VHH) domains (Nanobodies®) with low nanomolar affinity for human interleukin (hIL) 23. The crystal structure of a quaternary complex assembling hIL23 and several nanobodies against p19 and p40 subunits allowed identification of distinct epitopes and enabled rational design of a multivalent IL23-specific blocking nanobody. Taking advantage of the ease of nanobody formatting, multivalent IL23 nanobodies were assembled with properly designed linkers flanking an antihuman serum albumin nanobody, with improved hIL23 neutralization capacity in vitro and in vivo, as compared to the monovalent nanobodies. These constructs with long exposure time are excellent candidates for further developments targeting Crohn's disease, rheumatoid arthritis, and psoriasis.

14.
mBio ; 8(5)2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042493

RESUMO

The type II secretion system (T2SS) releases large folded exoproteins across the envelope of many Gram-negative pathogens. This secretion process therefore requires specific gating, interacting, and dynamics properties mainly operated by a bipartite outer membrane channel called secretin. We have a good understanding of the structure-function relationship of the pore-forming C-terminal domain of secretins. In contrast, the high flexibility of their periplasmic N-terminal domain has been an obstacle in obtaining the detailed structural information required to uncover its molecular function. In Pseudomonas aeruginosa, the Xcp T2SS plays an important role in bacterial virulence by its capacity to deliver a large panel of toxins and degradative enzymes into the surrounding environment. Here, we revealed that the N-terminal domain of XcpQ secretin spontaneously self-assembled into a hexamer of dimers independently of its C-terminal domain. Furthermore, and by using multidisciplinary approaches, we elucidate the structural organization of the XcpQ N domain and demonstrate that secretin flexibility at interdimer interfaces is mandatory for its function.IMPORTANCE Bacterial secretins are large homooligomeric proteins constituting the outer membrane pore-forming element of several envelope-embedded nanomachines essential in bacterial survival and pathogenicity. They comprise a well-defined membrane-embedded C-terminal domain and a modular periplasmic N-terminal domain involved in substrate recruitment and connection with inner membrane components. We are studying the XcpQ secretin of the T2SS present in the pathogenic bacterium Pseudomonas aeruginosa Our data highlight the ability of the XcpQ N-terminal domain to spontaneously oligomerize into a hexamer of dimers. Further in vivo experiments revealed that this domain adopts different conformations essential for the T2SS secretion process. These findings provide new insights into the functional understanding of bacterial T2SS secretins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Multimerização Proteica , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/metabolismo , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica
15.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 5): 286-293, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28471361

RESUMO

PorM is a membrane protein that is involved in the assembly of the type IX secretion system (T9SS) in Porphyromonas gingivalis, a major bacterial pathogen that is responsible for periodontal disease in humans. In the context of structural studies of PorM to better understand T9SS assembly, four camelid nanobodies were selected, produced and purified, and their specific interaction with the N-terminal or C-terminal part of the periplasmic domain of PorM was investigated. Diffracting crystals were also obtained, and the structures of the four nanobodies were solved by molecular replacement. Furthermore, two nanobodies were used as crystallization chaperones and turned out to be valuable tools in the structure-determination process of the periplasmic domain of PorM.


Assuntos
Proteínas de Bactérias/química , Chaperonas Moleculares/química , Porphyromonas gingivalis/química , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Sítios de Ligação , Camelídeos Americanos/imunologia , Camelus/imunologia , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/isolamento & purificação , Biblioteca de Peptídeos , Porphyromonas gingivalis/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/isolamento & purificação , Termodinâmica
16.
Methods Mol Biol ; 1635: 139-168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755368

RESUMO

There is growing interest in the use of mammalian protein expression systems, and in the use of antibody-derived chaperones, for structural studies. Here, we describe protocols ranging from the production of recombinant membrane proteins in stable inducible cell lines to biophysical characterization of purified membrane proteins in complex with llama antibody domains. These protocols were used to solve the structure of the mouse 5-HT3 serotonin receptor but are of broad applicability for crystallization or cryo-electron microscopy projects.


Assuntos
Anticorpos/metabolismo , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Camelus , Linhagem Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Estabilidade Proteica , Receptores 5-HT3 de Serotonina/genética , Proteínas Recombinantes/química
17.
Nat Microbiol ; 2: 17103, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28650463

RESUMO

The type VI secretion system (T6SS) is a multiprotein machine widespread in Gram-negative bacteria that delivers toxins into both eukaryotic and prokaryotic cells. The mechanism of action of the T6SS is comparable to that of contractile myophages. The T6SS builds a tail-like structure made of an inner tube wrapped by a sheath, assembled under an extended conformation. Contraction of the sheath propels the inner tube towards the target cell. The T6SS tail is assembled on a platform-the baseplate-which is functionally similar to bacteriophage baseplates. In addition, the baseplate docks the tail to a trans-envelope membrane complex that orients the tail towards the target. Here, we report the crystal structure of TssK, a central component of the T6SS baseplate. We show that TssK is composed of three domains, and establish the contribution of each domain to the interaction with TssK partners. Importantly, this study reveals that the N-terminal domain of TssK is structurally homologous to the shoulder domain of phage receptor-binding proteins, and the C-terminal domain binds the membrane complex. We propose that TssK has conserved the domain of attachment to the virion particle but has evolved the reception domain to use the T6SS membrane complex as receptor.


Assuntos
Bacteriófagos/química , Escherichia coli/química , Sistemas de Secreção Tipo VI/química , Proteínas Virais/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Cristalização , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Transporte Proteico , Receptores Virais/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 62(Pt 12): 1255-8, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17142910

RESUMO

The P31T mutant of Staphylococcus aureus thioredoxin crystallizes spontaneously in space group P2(1)2(1)2(1), with unit-cell parameters a = 41.7, b = 49.5, c = 55.6 A. The crystals diffract to 2.2 A resolution. Isomorphous crystals of wild-type thioredoxin as well as of other point mutants only grow when seeded with the P31T mutant. These results suggest seeding as a valuable tool complementing surface engineering for proteins that are hard to crystallize.


Assuntos
Cristalização/métodos , Staphylococcus aureus/química , Tiorredoxinas/química , Cristalografia por Raios X , Mutagênese Sítio-Dirigida/métodos , Staphylococcus aureus/genética , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação
19.
mBio ; 7(1): e01781-15, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26814179

RESUMO

UNLABELLED: The Gram-positive bacterium Lactococcus lactis, used for the production of cheeses and other fermented dairy products, falls victim frequently to fortuitous infection by tailed phages. The accompanying risk of dairy fermentation failures in industrial facilities has prompted in-depth investigations of these phages. Lactococcal phage Tuc2009 possesses extensive genomic homology to phage TP901-1. However, striking differences in the baseplate-encoding genes stimulated our interest in solving the structure of this host's adhesion device. We report here the X-ray structures of phage Tuc2009 receptor binding protein (RBP) and of a "tripod" assembly of three baseplate components, BppU, BppA, and BppL (the RBP). These structures made it possible to generate a realistic atomic model of the complete Tuc2009 baseplate that consists of an 84-protein complex: 18 BppU, 12 BppA, and 54 BppL proteins. The RBP head domain possesses a different fold than those of phages p2, TP901-1, and 1358, while the so-called "stem" and "neck" domains share structural features with their equivalents in phage TP901-1. The BppA module interacts strongly with the BppU N-terminal domain. Unlike other characterized lactococcal phages, Tuc2009 baseplate harbors two different carbohydrate recognition sites: one in the bona fide RBP head domain and the other in BppA. These findings represent a major step forward in deciphering the molecular mechanism by which Tuc2009 recognizes its saccharidic receptor(s) on its host. IMPORTANCE: Understanding how siphophages infect Lactococcus lactis is of commercial importance as they cause milk fermentation failures in the dairy industry. In addition, such knowledge is crucial in a general sense in order to understand how viruses recognize their host through protein-glycan interactions. We report here the lactococcal phage Tuc2009 receptor binding protein (RBP) structure as well as that of its baseplate. The RBP head domain has a different fold than those of phages p2, TP901-1, and 1358, while the so-called "stem" and "neck" share the fold characteristics also found in the equivalent baseplate proteins of phage TP901-1. The baseplate structure contains, in contrast to other characterized lactococcal phages, two different carbohydrate binding modules that may bind different motifs of the host's surface polysaccharide.


Assuntos
Bacteriófagos/química , Metabolismo dos Carboidratos , Lactococcus lactis/virologia , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Complexos Multiproteicos/química , Ligação Proteica , Conformação Proteica , Siphoviridae/química
20.
Protein Eng Des Sel ; 29(4): 123-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26945588

RESUMO

Highly potent human antibodies are required to therapeutically neutralize cytokines such as interleukin-6 (IL-6) that is involved in many inflammatory diseases and malignancies. Although a number of mutagenesis approaches exist to perform antibody affinity maturation, these may cause antibody instability and production issues. Thus, a robust and easy antibody affinity maturation strategy to increase antibody potency remains highly desirable. By immunizing llama, cloning the 'immune' antibody repertoire and using phage display, we selected a diverse set of IL-6 antagonistic Fabs. Heavy chain shuffling was performed on the Fab with lowest off-rate, resulting in a panel of variants with even lower off-rate. Structural analysis of the Fab:IL-6 complex suggests that the increased affinity was partly due to a serine to tyrosine switch in HCDR2. This translated into neutralizing capacity in an in vivo model of IL-6 induced SAA production. Finally, a novel Fab library was designed, encoding all variations found in the natural repertoire of VH genes identified after heavy chain shuffling. High stringency selections resulted in identification of a Fab with 250-fold increased potency when re-formatted into IgG1. Compared with a heavily engineered anti-IL-6 monoclonal antibody currently in clinical development, this IgG was at least equally potent, showing the engineering process to have had led to a highly potent anti-IL-6 antibody.


Assuntos
Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Mutação/genética , Biblioteca de Peptídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos , Camelídeos Americanos/genética , Humanos , Fragmentos Fab das Imunoglobulinas/química , Interleucina-6/imunologia , Modelos Imunológicos , Modelos Moleculares , Proteínas Recombinantes/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA