Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Virol ; 95(8): e28984, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37503561

RESUMO

We aimed to evaluate the association between the humoral and cellular immune responses and symptomatic SARS-CoV-2 infection with Delta or Omicron BA.1 variants in fully vaccinated outpatients. Anti-receptor binding domain (RBD) IgG levels and interferon-gamma (IFN-γ) release were evaluated at PCR-diagnosis of SARS-CoV-2 in 636 samples from negative and positive patients during Delta and Omicron BA.1 periods. Median levels of anti-RBD IgG in positive patients were significantly lower than in negative patients for both variants (p < 0.05). The frequency of Omicron BA.1 infection in patients with anti-RBD IgG concentrations ≥1000 binding antibody units (BAU)/mL was 51.0% and decreased to 34.4% in patients with concentrations ≥3000 BAU/mL. For Delta infection, the frequency of infection was significantly lower when applying the same anti-RBD IgG thresholds (13.3% and 5.3% respectively, p < 0.05). In addition, individuals in the hybrid immunity group had a 4.5 times lower risk of Delta infection compared to the homologous vaccination group (aOR = 0.22, 95% CI: [0.05-0.64]. No significant decrease in the risk of Omicron BA.1 infection was observed in the hybrid group compared to the homologous group, but the risk decreased within the hybrid group as anti-RBD IgG titers increased (aOR = 0.08, 95% CI: [0.01-0.41], p = 0.008). IFN-γ release post-SARS-CoV-2 peptide stimulation was not different between samples from patients infected (either with Delta or Omicron BA.1 variant) or not (p > 0.05). Our results show that high circulating levels of anti-RBD IgG and hybrid immunity were independently associated with a lower risk of symptomatic SARS-CoV-2 infection in outpatients with differences according to the infecting variant (www.clinicaltrials.gov; ID NCT05060939).


Assuntos
COVID-19 , Hepatite D , Humanos , Pacientes Ambulatoriais , SARS-CoV-2 , COVID-19/prevenção & controle , Interferon gama , Imunoglobulina G , Anticorpos Antivirais
2.
Emerg Infect Dis ; 27(5): 1540-1543, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900195

RESUMO

We report a novel severe acute respiratory syndrome coronavirus 2 variant derived from clade 19B (HMN.19B variant or Henri Mondor variant). This variant is characterized by the presence of 18 amino acid substitutions, including 7-8 substitutions in the spike protein and 2 deletions. These variants actively circulate in different regions of France.


Assuntos
COVID-19 , SARS-CoV-2 , Substituição de Aminoácidos , França/epidemiologia , Humanos , Glicoproteína da Espícula de Coronavírus/genética
3.
Euro Surveill ; 26(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33478625

RESUMO

We report the strategy leading to the first detection of variant of concern 202012/01 (VOC) in France (21 December 2020). First, the spike (S) deletion H69-V70 (ΔH69/ΔV70), identified in certain SARS-CoV-2 variants including VOC, is screened for. This deletion is associated with a S-gene target failure (SGTF) in the three-target RT-PCR assay (TaqPath kit). Subsequently, SGTF samples are whole genome sequenced. This approach revealed mutations co-occurring with ΔH69/ΔV70 including S:N501Y in the VOC.


Assuntos
Sequência de Bases , COVID-19/epidemiologia , Genoma Viral , SARS-CoV-2/genética , Deleção de Sequência/genética , Glicoproteína da Espícula de Coronavírus/genética , França/epidemiologia , Humanos
4.
Euro Surveill ; 26(9)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33663644

RESUMO

The emergence of SARS-CoV-2 variant 20I/501Y.V1 (VOC-202012/1 or GR/501Y.V1) is concerning given its increased transmissibility. We reanalysed 11,916 PCR-positive tests (41% of all positive tests) performed on 7-8 January 2021 in France. The prevalence of 20I/501Y.V1 was 3.3% among positive tests nationwide and 6.9% in the Paris region. Analysing the recent rise in the prevalence of 20I/501Y.V1, we estimate that, in the French context, 20I/501Y.V1 is 52-69% more transmissible than the previously circulating lineages, depending on modelling assumptions.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , França/epidemiologia , Humanos , Paris
5.
Placenta ; 136: 1-7, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963271

RESUMO

INTRODUCTION: SARS-Cov-2 infection during pregnancy can lead to severe placental lesions characterized by massive perivillous fibrin deposition, histiocytic intervillositis and trophoblast necrosis. Diffuse placental damage of this kind is rare, but can sometimes lead to obstetric complications, such as intrauterine fetal death (IUFD). The objectives of this study were to identify possible predictors of severe placental lesions. METHODS: We retrospectively studied 96 placentas from SARS-Cov-2 positive pregnant women who gave birth between March 2020 and March 2022. Cases with and without severe placental lesions were compared in terms of clinical and laboratory findings. RESULTS: Twelve of the 96 patients had severe placental lesions. There was no significant association with diabetes, obesity or severe clinical maternal disease. In contrast, presence of severe placental lesions was significantly associated with neonatal intensive care, cesarean section, prematurity, IUFD, intrauterine growth restriction (IUGR), gestational age, maternal hypofibrinogenemia and thrombocytopenia. No cases of severe placental lesions were observed in vaccinated patients or in those with the Omicron variant. DISCUSSION: In these patients, severe placental lesions due to SARS-Cov-2 were significantly associated with the presence of coagulation abnormalities (hypofibrinogenemia and thrombocytopenia), IUGR and gestational age. These results support laboratory and ultrasound monitoring of these parameters in pregnant women with SARS-Cov-2 infection, especially during the second trimester, to predict potential negative fetal outcomes.


Assuntos
Afibrinogenemia , COVID-19 , Complicações Infecciosas na Gravidez , Recém-Nascido , Feminino , Gravidez , Humanos , Placenta/patologia , COVID-19/complicações , COVID-19/patologia , SARS-CoV-2 , Gestantes , Cesárea/efeitos adversos , Estudos Retrospectivos , Afibrinogenemia/complicações , Afibrinogenemia/patologia , Natimorto , Morte Fetal/etiologia , Complicações Infecciosas na Gravidez/patologia , Retardo do Crescimento Fetal/patologia
6.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632661

RESUMO

OBJECTIVES: High viral load in upper respiratory tract specimens observed for Delta cases might contribute to its increased infectivity compared to the other variant. However, it is not yet documented if the Omicron variant's enhanced infectivity is also related to a higher viral load. Our aim was to determine if the Omicron variant's spread is also related to higher viral loads compared to the Delta variant. METHODS: Nasopharyngeal swabs, 129 (Omicron) and 85 (Delta), from Health Care Workers were collected during December 2021 at the University Hospital of Lyon, France. Cycle threshold (Ct) for the RdRp target of cobas® 6800 SARS-CoV-2 assay was used as a proxy to evaluate SARS-CoV-2 viral load. Variant identification was performed using a screening panel and confirmed by whole genome sequencing. RESULTS: Herein, we showed that the RT-PCR Ct values in Health Care Workers sampled within 5 days after symptom onset were significantly higher for Omicron cases than Delta cases (21.7 for Delta variant and 23.8 for Omicron variant, p = 0.008). This difference was also observed regarding patient with complete vaccination. CONCLUSIONS: This result supports the studies showing that the increased transmissibility of Omicron is related to other mechanisms than higher virus excretion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Nasofaringe , SARS-CoV-2/genética , Carga Viral
7.
Viruses ; 14(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35632697

RESUMO

Human Anelloviridae is a highly prevalent viral family, including three main genera­Alphatorquevirus (Torque teno virus, TTV), Betatorquevirus (Torque teno mini virus, TTMV), and Gammatorquevirus (Torque teno midi virus, TTMDV). To date, the characterization of Anelloviridae in the respiratory tract of children with acute respiratory infection (ARI) has been poorly reported and mainly focused on TTV. We performed a metagenomic analysis of eight respiratory samples collected from children with an ARI of unknown etiology (eight samples tested negative with a multiplex PCR assay, out of the 39 samples initially selected based on negative routine diagnostic testing). A total of 19 pediatric respiratory samples that tested positive for respiratory syncytial virus (RSV, n = 13) or influenza virus (n = 6) were also sequenced. Anelloviridae reads were detected in 16/27 samples, including 6/8 negative samples, 7/13 RSV samples and 3/6 influenza samples. For samples with a detection of at least one Anelloviridae genus, TTMV represented 87.1 (66.1−99.2)% of Anelloviridae reads, while TTV and TTMDV represented 0.8 (0.0−9.6)% and 0.7 (0.0−7.1)%, respectively (p < 0.001). Our findings highlight a high prevalence of TTMV in respiratory samples of children with an ARI of unknown etiology, as well as in samples with an RSV or influenza infection. Larger studies are needed to explore the role of TTMV in childhood respiratory diseases.


Assuntos
Anelloviridae , Infecções por Vírus de DNA , Influenza Humana , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Torque teno virus , Anelloviridae/genética , Criança , Humanos , Sistema Respiratório , Infecções Respiratórias/diagnóstico , Torque teno virus/genética
8.
Clin Microbiol Infect ; 28(11): 1503.e5-1503.e8, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35792280

RESUMO

OBJECTIVES: To describe Delta/Omicron SARS-CoV-2 variants co-infection detection and confirmation during the fifth wave of COVID-19 pandemics in France in 7 immunocompetent and epidemiologically unrelated patients. METHODS: Since December 2021, the surveillance of Delta/Omicron SARS-CoV-2 variants of concern (VOC) circulation was performed through prospective screening of positive-samples using single nucleotide polymorphism (SNP) PCR assays targeting SARS-CoV-2 S-gene mutations K417N (Omicron specific) and L452R (Delta specific). Samples showing unexpected mutational profiles were further submitted to whole genome sequencing (WGS) using three different primer sets. RESULTS: Between weeks 49-2021 and 02-2022, SARS-CoV-2 genome was detected in 3831 respiratory samples, of which 3237 (84.5%) were screened for VOC specific SNPs. Unexpected mutation profiles suggesting a dual Delta/Omicron population were observed in 7 nasopharyngeal samples (0.2%). These co-infections were confirmed by WGS. For 2 patients, the sequence analyses of longitudinal samples collected 7 to 11 days apart showed that Delta or Omicron can outcompete the other variant during dual infection. Additionally, for one of these samples, a recombination event between Delta and Omicron was detected. CONCLUSIONS: This work demonstrates that SARS-CoV-2 Delta/Omicron co-infections are not rare in high virus co-circulation periods. Moreover, co-infections can further lead to genetic recombination which may generate new chimeric variants with unpredictable epidemic or pathogenic properties that could represent a serious health threat.


Assuntos
COVID-19 , Coinfecção , Humanos , SARS-CoV-2/genética , Coinfecção/epidemiologia , Estudos Prospectivos , COVID-19/epidemiologia , Análise de Sequência
9.
Nat Commun ; 13(1): 6316, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274062

RESUMO

From December 2021-February 2022, an intense and unprecedented co-circulation of SARS-CoV-2 variants with high genetic diversity raised the question of possible co-infections between variants and how to detect them. Using 11 mixes of Delta:Omicron isolates at different ratios, we evaluated the performance of 4 different sets of primers used for whole-genome sequencing and developed an unbiased bioinformatics method for the detection of co-infections involving genetically distinct SARS-CoV-2 lineages. Applied on 21,387 samples collected between December 6, 2021 to February 27, 2022 from random genomic surveillance in France, we detected 53 co-infections between different lineages. The prevalence of Delta and Omicron (BA.1) co-infections and Omicron lineages BA.1 and BA.2 co-infections were estimated at 0.18% and 0.26%, respectively. Among 6,242 hospitalized patients, the intensive care unit (ICU) admission rates were 1.64%, 4.81% and 15.38% in Omicron, Delta and Delta/Omicron patients, respectively. No BA.1/BA.2 co-infections were reported among ICU admitted patients. Among the 53 co-infected patients, a total of 21 patients (39.6%) were not vaccinated. Although SARS-CoV-2 co-infections were rare in this study, their proper detection is crucial to evaluate their clinical impact and the risk of the emergence of potential recombinants.


Assuntos
COVID-19 , Coinfecção , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Prevalência , Coinfecção/epidemiologia
10.
Viruses ; 14(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-36016297

RESUMO

Whole-genome sequencing has become an essential tool for real-time genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide. The handling of raw next-generation sequencing (NGS) data is a major challenge for sequencing laboratories. We developed an easy-to-use web-based application (EPISEQ SARS-CoV-2) to analyse SARS-CoV-2 NGS data generated on common sequencing platforms using a variety of commercially available reagents. This application performs in one click a quality check, a reference-based genome assembly, and the analysis of the generated consensus sequence as to coverage of the reference genome, mutation screening and variant identification according to the up-to-date Nextstrain clade and Pango lineage. In this study, we validated the EPISEQ SARS-CoV-2 pipeline against a reference pipeline and compared the performance of NGS data generated by different sequencing protocols using EPISEQ SARS-CoV-2. We showed a strong agreement in SARS-CoV-2 clade and lineage identification (>99%) and in spike mutation detection (>99%) between EPISEQ SARS-CoV-2 and the reference pipeline. The comparison of several sequencing approaches using EPISEQ SARS-CoV-2 revealed 100% concordance in clade and lineage classification. It also uncovered reagent-related sequencing issues with a potential impact on SARS-CoV-2 mutation reporting. Altogether, EPISEQ SARS-CoV-2 allows an easy, rapid and reliable analysis of raw NGS data to support the sequencing efforts of laboratories with limited bioinformatics capacity and those willing to accelerate genomic surveillance of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , SARS-CoV-2/genética
11.
Crit Care Resusc ; 24(3): 242-250, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38046204

RESUMO

Objective: Pregnancy is a risk factor for acute respiratory failure (ARF) following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We hypothesised that SARS-CoV-2 viral load in the respiratory tract might be higher in pregnant intensive care unit (ICU) patients with ARF than in non-pregnant ICU patients with ARF as a consequence of immunological adaptation during pregnancy. Design: Single-centre, retrospective observational case-control study. Setting: Adult level 3 ICU in a French university hospital. Participants: Eligible participants were adults with ARF associated with coronavirus disease 2019 (COVID-19) pneumonia. Main outcome measure: The primary endpoint of the study was viral load in pregnant and non-pregnant patients. Results: 251 patients were included in the study, including 17 pregnant patients. Median gestational age at ICU admission amounted to 28 + 3/7 weeks (interquartile range [IQR], 26 + 1/7 to 31 + 5/7 weeks). Twelve patients (71%) had an emergency caesarean delivery due to maternal respiratory failure. Pregnancy was independently associated with higher viral load (-4.6 ± 1.9 cycle threshold; P < 0.05). No clustering or over-represented mutations were noted regarding SARS-CoV-2 sequences of pregnant women. Emergency caesarean delivery was independently associated with a modest but significant improvement in arterial oxygenation, amounting to 32 ± 12 mmHg in patients needing invasive mechanical ventilation. ICU mortality was significantly lower in pregnant patients (0 v 35%; P < 0.05). Age, Simplified Acute Physiology Score (SAPS) II score, and acute respiratory distress syndrome were independent risk factors for ICU mortality, while pregnancy status and virological variables were not. Conclusions: Viral load was substantially higher in pregnant ICU patients with COVID-19 and ARF compared with non-pregnant ICU patients with COVID-19 and ARF. Pregnancy was not independently associated with ICU mortality after adjustment for age and disease severity.

12.
Emerg Microbes Infect ; 11(1): 2423-2432, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36098494

RESUMO

Omicron variant is circulating in the presence of a globally acquired immunity unlike the ancestral SARS-CoV-2 isolate. Herein, we investigated the normalized viral load dynamics and viral culture status in 44 fully vaccinated healthcare workers (HCWs) infected with the Omicron BA.1 variant. Viral load dynamics of 38 unvaccinated HCWs infected with the 20A variant during the first pandemic wave was also studied. We then explored the impact of Omicron infection on pre-existing immunity assessing anti-RBD IgG levels, neutralizing antibody titres against 19A, Delta and Omicron isolates, as well as IFN-γ release following cell stimulation with SARS-CoV-2 peptides. We reported that two weeks after diagnosis a greater proportion of HCWs infected with 20A (78.9%, 15/19) than with Omicron BA.1 (44.7%, 17/38; p = 0.02) were still positive by RT-qPCR. We found that Omicron breakthrough infections led to an overall enhancement of vaccine-induced humoral and cellular immunity as soon as a median [interquartile range] of 8 [7-9] days post symptom onset. Among samples with similar high viral loads, non-culturable samples exhibited higher neutralizing antibody titres and anti-RBD IgG levels than culturable samples. Additionally, Omicron infection led to an enhancement of antibodies neutralization capacity against other SARS-CoV-2 isolates. Taken together, the results suggest that Omicron BA.1 vaccine breakthrough infection is associated with a faster viral clearance than that of the ancestral SARS-CoV-2, in addition this new variant leads to a rapid enhancement of the humoral response against multiple SARS-CoV-2 variants, and of the cellular response.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2/genética , Eliminação de Partículas Virais , Anticorpos Antivirais , Imunoglobulina G , Anticorpos Neutralizantes
13.
Emerg Microbes Infect ; 10(1): 167-177, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33399033

RESUMO

During routine molecular surveillance of SARS-CoV-2 performed at the National Reference Center of Respiratory Viruses (Lyon, France) (n = 229 sequences collected February-April 2020), two frameshifting deletions were detected in the open reading frame 6, at the same position (27267). While a 26-nucleotide deletion variant (D26) was only found in one nasopharyngeal sample in March 2020, the 34-nucleotide deletion (D34) was found within a single geriatric hospital unit in 5/9 patients and one health care worker in April 2020. Phylogeny analysis strongly suggested a nosocomial transmission of D34, with potential fecal transmission, as also identified in a stool sample. No difference in disease severity was observed between patients hospitalized in the geriatric unit infected with WT or D34. In vitro D26 and D34 characterization revealed comparable replication kinetics with the wild-type (WT), but differential host immune responses. While interferon-stimulated genes were similarly upregulated after infection with WT and ORF6 variants, the latter specifically induced overexpression of 9 genes coding for inflammatory cytokines in the NF-kB pathway, including CCL2/MCP1, PTX3, and TNFα, for which high plasma levels have been associated with severe COVID-19. Our findings emphasize the need to monitor the occurrence of ORF6 deletions and assess their impact on the host immune response.


Assuntos
COVID-19/epidemiologia , Infecção Hospitalar/virologia , Variação Genética , Genoma Viral , SARS-CoV-2/genética , Proteínas Virais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , COVID-19/imunologia , COVID-19/virologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/imunologia , Citocinas/imunologia , Feminino , Mutação da Fase de Leitura , França/epidemiologia , Hospitalização , Humanos , Imunidade , Inflamação , Masculino , Filogenia , Deleção de Sequência , Proteínas Virais/imunologia
14.
Virus Evol ; 6(2): veaa075, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33318859

RESUMO

Since the beginning of the COVID-19 outbreak, SARS-CoV-2 whole-genome sequencing (WGS) has been performed at unprecedented rate worldwide with the use of very diverse Next-Generation Sequencing (NGS) methods. Herein, we compare the performance of four NGS-based approaches for SARS-CoV-2 WGS. Twenty-four clinical respiratory samples with a large scale of Ct values (from 10.7 to 33.9) were sequenced with four methods. Three used Illumina sequencing: an in-house metagenomic NGS (mNGS) protocol and two newly commercialised kits including a hybridisation capture method developed by Illumina (DNA Prep with Enrichment kit and Respiratory Virus Oligo Panel, RVOP), and an amplicon sequencing method developed by Paragon Genomics (CleanPlex SARS-CoV-2 kit). We also evaluated the widely used amplicon sequencing protocol developed by ARTIC Network and combined with Oxford Nanopore Technologies (ONT) sequencing. All four methods yielded near-complete genomes (>99%) for high viral loads samples (n = 8), with mNGS and RVOP producing the most complete genomes. For mid viral loads (Ct 20-25), amplicon-based enrichment methods led to genome coverage >99 per cent for all samples while 1/8 sample sequenced with RVOP and 2/8 samples sequenced with mNGS had a genome coverage below 99 per cent. For low viral loads (Ct ≥25), amplicon-based enrichment methods were the most sensitive techniques. All methods were highly concordant in terms of identity in complete consensus sequence. Just one mismatch in three samples was observed in CleanPlex vs the other methods, due to the dedicated bioinformatics pipeline setting a high threshold to call SNP compared to reference sequence. Importantly, all methods correctly identified a newly observed 34nt-deletion in ORF6 but required specific bioinformatic validation for RVOP. Finally, as a major warning for targeted techniques, a loss of coverage in any given region of the genome should alert to a potential rearrangement or a SNP in primer-annealing or probe-hybridizing regions and would require further validation using unbiased metagenomic sequencing.

15.
J Clin Med ; 9(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560044

RESUMO

A reliable diagnostic assay is crucial to early detect new COVID-19 cases and limit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Since the onset of the COVID-19 pandemic, the World Health Organization has published several diagnostic molecular approaches developed by referral laboratories, including Charité (Germany), HKU (Hong Kong), China CDC (China), US CDC (United States), and Institut Pasteur, Paris (France). We aimed to compare the sensitivity and specificity of these different RT-PCR assays using SARS-CoV-2 cell culture supernatants and clinical respiratory samples. Overall, the different RT-PCR assays performed well for SARS-CoV-2 detection and were all specific except the N Charité (Germany), and N2 US CDC (United States) assays. RdRp Institut Pasteur (IP2, IP4), N China CDC, and N1 US CDC were found to be the most sensitive assays. The data presented herein are of prime importance to facilitate the equipment choice of diagnostic laboratories, as well as for the development of marketed tests.

16.
Microorganisms ; 8(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036303

RESUMO

Viral metagenomics next-generation sequencing (mNGS) is increasingly being used to characterize the human virome. The impact of viral nucleic extraction on virome profiling has been poorly studied. Here, we aimed to compare the sensitivity and sample and reagent contamination of three extraction methods used for viral mNGS: two automated platforms (eMAG; MagNA Pure 24, MP24) and the manual QIAamp Viral RNA Mini Kit (QIAamp). Clinical respiratory samples (positive for Respiratory Syncytial Virus or Herpes Simplex Virus), one mock sample (including five viruses isolated from respiratory samples), and a no-template control (NTC) were extracted and processed through an mNGS workflow. QIAamp yielded a lower proportion of viral reads for both clinical and mock samples. The sample cross-contamination was higher when using MP24, with up to 36.09% of the viral reads mapping to mock viruses in the NTC (vs. 1.53% and 1.45% for eMAG and QIAamp, respectively). The highest number of viral reads mapping to bacteriophages in the NTC was found with QIAamp, suggesting reagent contamination. Our results highlight the importance of the extraction method choice for accurate virome characterization.

18.
J Clin Med ; 8(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739505

RESUMO

Characterising dynamics of Influenza A Viruses (IAV) within-host evolution is an active field of research which may lead to a better understanding of viral pathogenesis. Using a pregnant mouse model, a study has recently suggested that immune modulation during pregnancy could promote the emergence of IAV quasispecies with increased virulence. Herein, we assess the clinical relevance of these findings in humans. We studied IAV intra-host diversity (ihD) in pregnant (n = 36) and non-pregnant (n = 23) women hospitalized in Lyon for IAV infection (01/2015-05/2018). Whole IAV genomes present in nasopharyngeal samples were sequenced in duplicate to analyze reproducible intra-host single nucleotide variants (ihSNV). Counts, relative frequencies and locations of ihSNV were used as indicators of ihD. The median ihSNV/kb counts per segment were between 0 and 1.3. There was >81% ihSNV at relative frequencies between 1-5% for H1N1 and >51% for H3N2 IAV. No significant difference was noted between pregnant and non-pregnant women when considering all or only non-synonymous ihSNV. Seven convergent non-synonymous ihSNV were found; none were significantly associated with pregnancy. These results suggest that modulation of the immune system during pregnancy in humans does not impact IAV ihD, in contrast to mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA