Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7995): 483-488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233620

RESUMO

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.

2.
Nano Lett ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365942

RESUMO

Two-dimensional materials are extraordinarily sensitive to external stimuli, making them ideal for studying fundamental properties and for engineering devices with new functionalities. One such stimulus, strain, affects the magnetic properties of the layered magnetic semiconductor CrSBr to such a degree that it can induce a reversible antiferromagnetic-to-ferromagnetic phase transition. Using scanning SQUID-on-lever microscopy, we directly image the effects of spatially inhomogeneous strain on the magnetization of layered CrSBr, as it is polarized by a field applied along its easy axis. The evolution of this magnetization and the formation of domains is reproduced by a micromagnetic model, which incorporates the spatially varying strain and the corresponding changes in the local interlayer exchange stiffness. The observed sensitivity to small strain gradients along with similar images of a nominally unstrained CrSBr sample suggest that unintentional strain inhomogeneity influences the magnetic behavior of exfoliated samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA