Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 585(7824): 225-233, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908268

RESUMO

Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.


Assuntos
Atmosfera/química , Butadienos/análise , Butadienos/química , Mapeamento Geográfico , Hemiterpenos/análise , Hemiterpenos/química , Imagens de Satélites , África , Austrália , Brasil , Conjuntos de Dados como Assunto , El Niño Oscilação Sul , Formaldeído/química , Radical Hidroxila/análise , Radical Hidroxila/química , Ciclo do Nitrogênio , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Oxirredução , Estações do Ano , Sudeste dos Estados Unidos
2.
Agric For Meteorol ; 2962021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33692602

RESUMO

Eddy covariance (EC) measurements of ecosystem-atmosphere carbon dioxide (CO2) exchange provide the most direct assessment of the terrestrial carbon cycle. Measurement biases for open-path (OP) CO2 concentration and flux measurements have been reported for over 30 years, but their origin and appropriate correction approach remain unresolved. Here, we quantify the impacts of OP biases on carbon and radiative forcing budgets for a sub-boreal wetland. Comparison with a reference closed-path (CP) system indicates that a systematic OP flux bias (0.54 µmol m-2 s-1) persists for all seasons leading to a 110% overestimate of the ecosystem CO2 sink (cumulative error of 78 gC m-2). Two potential OP bias sources are considered: Sensor-path heat exchange (SPHE) and analyzer temperature sensitivity. We examined potential OP correction approaches including: i) Fast temperature measurements within the measurement path and sensor surfaces; ii) Previously published parameterizations; and iii) Optimization algorithms. The measurements revealed year-round average temperature and heat flux gradients of 2.9 °C and 16 W m-2 between the bottom sensor surfaces and atmosphere, indicating SPHE-induced OP bias. However, measured SPHE correlated poorly with the observed differences between OP and CP CO2 fluxes. While previously proposed nominally universal corrections for SPHE reduced the cumulative OP bias, they led to either systematic under-correction (by 38.1 gC m-2) or to systematic over-correction (by 17-37 gC m-2). The resulting budget errors exceeded CP random uncertainty and change the sign of the overall carbon and radiative forcing budgets. Analysis of OP calibration residuals as a function of temperature revealed a sensitivity of 5 µmol m-3 K-1. This temperature sensitivity causes CO2 calibration errors proportional to sample air fluctuations that can offset the observed growing season flux bias by 50%. Consequently, we call for a new OP correction framework that characterizes SPHE- and temperature-induced CO2 measurement errors.

3.
Geophys Res Lett ; 47(17)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-33612875

RESUMO

Peatlands are among the largest natural sources of atmospheric methane (CH4) worldwide. Peatland emissions are projected to increase under climate change, as rising temperatures and shifting precipitation accelerate microbial metabolic pathways favorable for CH4 production. However, how these changing environmental factors will impact peatland emissions over the long term remains unknown. Here, we investigate a novel data set spanning an exceptionally long 11 years to analyze the influence of soil temperature and water table elevation on peatland CH4 emissions. We show that higher water tables dampen the springtime increases in CH4 emissions as well as their subsequent decreases during late summer to fall. These results imply that any hydroclimatological changes in northern peatlands that shift seasonal water availability from winter to summer will increase annual CH4 emissions, even if temperature remains unchanged. Therefore, advancing hydrological understanding in peatland watersheds will be crucial for improving predictions of CH4 emissions.

4.
Agric For Meteorol ; 2782019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33612901

RESUMO

Wetlands represent the dominant natural source of methane (CH4) to the atmosphere. Thus, substantial effort has been spent examining the CH4 budgets of global wetlands via continuous ecosystem-scale measurements using the eddy covariance (EC) technique. Robust error characterization for such measurements, however, remains a major challenge. Here, we quantify systematic, random and gap-filling errors and the resulting uncertainty in CH4 fluxes using a 3.5 year time series of simultaneous open- and closed path CH4 flux measurements over a sub-boreal wetland. After correcting for high- and low frequency flux attenuation, the magnitude of systematic frequency response errors were negligible relative to other uncertainties. Based on three different random flux error estimations, we found that errors of the CH4 flux measurement systems were smaller in magnitude than errors associated with the turbulent transport and flux footprint heterogeneity. Errors on individual half-hourly CH4 fluxes were typically 6%-41%, but not normally distributed (leptokurtic), and thus need to be appropriately characterized when fluxes are compared to chamber-derived or modeled CH4 fluxes. Integrated annual fluxes were only moderately sensitive to gap-filling, based on an evaluation of 4 different methods. Calculated budgets agreed on average to within 7% (≤ 1.5 g - CH4 m-2 yr-1). Marginal distribution sampling using open source code was among the best-performing of all the evaluated gap-filling approaches and it is therefore recommended given its transparency and reproducibility. Overall, estimates of annual CH4 emissions for both EC systems were in excellent agreement (within 0.6 g - CH4 m-2 yr-1) and averaged 18 g - CH4 m-2 yr-1. Total uncertainties on the annual fluxes were larger than the uncertainty of the flux measurement systems and estimated between 7-17%. Identifying trends and differences among sites or site years requires that the observed variability exceeds these uncertainties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA