Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cryobiology ; 102: 1-14, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34081925

RESUMO

The family Orchidaceae, with over 25,000 species, includes five subfamilies and nearly 700 genera. Loss of plants in the wild has resulted from clearing of forests and excessive collection for various purposes. Moreover, the requirement of symbiotic association during seed germination under natural conditions adds a certain level of difficulty in retaining the orchid resources in the wild. Cryopreservation is an important arena in conservation science due to its potential of storing genetic resources without altering the genetic makeup. Cryopreserved orchids are a very small percentage of the species, and are also not representative of most genera. Finding effective protocols for the various explant types is of prime importance in conserving orchid diversity. Seed is the most commonly stored and directly useful explant, and direct plunging in liquid nitrogen or PVS2 vitrification appear to be suitable for most tested species. The myriad of other species should be screened as they become available, with special emphasis on seed maturity and moisture content. Studies of protocorms and protocorm-like bodies mostly employ desiccation, PVS2 vitrification or encapsulation-dehydration. Pollinia are generally stored successfully following desiccation or slow cooling. There are too few examples of shoot tip cryopreservation to make a determination, however vitrification techniques are likely the most useful for a range of genera. A systematic and coordinated effort is needed to screen all available species in as many taxa as possible, initially with seed, protocorms and pollinia. It is a charge to the orchid research community to organize this effort and fill in the required data for the large number of untested taxa. In addition, providing stored samples to established orchid cryo collections would greatly increase preservation of these endangered treasures.


Assuntos
Criopreservação , Orchidaceae , Criopreservação/métodos , Crioprotetores , Sementes , Vitrificação
2.
J Bacteriol ; 197(16): 2675-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055117

RESUMO

UNLABELLED: Entry into sporulation in Bacillus subtilis is governed by a multicomponent phosphorelay, a complex version of a two-component system which includes at least three histidine kinases (KinA to KinC), two phosphotransferases (Spo0F and Spo0B), and a response regulator (Spo0A). Among the three histidine kinases, KinA is known as the major sporulation kinase; it is autophosphorylated with ATP upon starvation and then transfers a phosphoryl group to the downstream components in a His-Asp-His-Asp signaling pathway. Our recent study demonstrated that KinA forms a homotetramer, not a dimer, mediated by the N-terminal domain, as a functional unit. Furthermore, when the N-terminal domain was overexpressed in the starving wild-type strain, sporulation was impaired. We hypothesized that this impairment of sporulation could be explained by the formation of a nonfunctional heterotetramer of KinA, resulting in the reduced level of phosphorylated Spo0A (Spo0A∼P), and thus, autophosphorylation of KinA could occur in trans. To test this hypothesis, we generated a series of B. subtilis strains expressing homo- or heterogeneous KinA protein complexes consisting of various combinations of the phosphoryl-accepting histidine point mutant protein and the catalytic ATP-binding domain point mutant protein. We found that the ATP-binding-deficient protein was phosphorylated when the phosphorylation-deficient protein was present in a 1:1 stoichiometry in the tetramer complex, while each of the mutant homocomplexes was not phosphorylated. These results suggest that ATP initially binds to one protomer within the tetramer complex and then the γ-phosphoryl group is transmitted to another in a trans fashion. We further found that the sporulation defect of each of the mutant proteins is complemented when the proteins are coexpressed in vivo. Taken together, these in vitro and in vivo results reinforce the evidence that KinA autophosphorylation is able to occur in a trans fashion. IMPORTANCE: Autophosphorylation of histidine kinases is known to occur by either the cis (one subunit of kinase phosphorylating itself within the multimer) or the trans (one subunit of the multimer phosphorylates the other subunit) mechanism. The present study provided direct in vivo and in vitro evidence that autophosphorylation of the major sporulation histidine kinase (KinA) is able to occur in trans within the homotetramer complex. While the physiological and mechanistic significance of the trans autophosphorylation reaction remains obscure, understanding the detailed reaction mechanism of the sporulation kinase is the first step toward gaining insight into the molecular mechanisms of the initiation of sporulation, which is believed to be triggered by unknown factors produced under conditions of nutrient depletion.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Esporos Bacterianos/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Meios de Cultura , Histidina Quinase , Fosforilação , Plasmídeos/genética , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Esporos Bacterianos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Microbiology (Reading) ; 161(Pt 5): 1092-1104, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25701730

RESUMO

In response to starvation, Bacillus subtilis cells differentiate into different subsets, undergoing cannibalism, biofilm formation or sporulation. These processes require a multiple component phosphorelay, wherein the master regulator Spo0A is activated upon phosphorylation by one or a combination of five histidine kinases (KinA-KinE) via two intermediate phosphotransferases, Spo0F and Spo0B. In this study, we focused on KinC, which was originally identified as a sporulation kinase and was later shown to regulate cannibalism and biofilm formation. First, genetic experiments using both the domesticated and undomesticated (biofilm forming) strains revealed that KinC activity and the membrane localization are independent of both the lipid raft marker proteins FloTA and cytoplasmic potassium concentration, which were previously shown to be required for the kinase activity. Next, we demonstrated that KinC controls cannibalism and biofilm formation in a manner dependent on phosphorelay. For further detailed characterization of KinC, we established an IPTG-inducible expression system in the domesticated strain, in which biofilm formation is defective, for simplicity of study. Using this system, we found that the N-terminal transmembrane domain is dispensable but the PAS domain is needed for the kinase activity. An in vivo chemical cross-linking experiment demonstrated that the soluble and functional KinC (KinC(ΔTM1+2)) forms a tetramer. Based on these results, we propose a revised model in which KinC becomes active by forming a homotetramer via the N-terminal PAS domain, but its activity is independent of both the lipid raft and the potassium leakage, which was previously suggested to be induced by surfactin.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Biofilmes , Membrana Celular/metabolismo , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Histidina Quinase , Espaço Intracelular , Fosforilação , Potássio/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/química , Multimerização Proteica
4.
Proc Natl Acad Sci U S A ; 109(50): E3513-22, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23169620

RESUMO

Starving Bacillus subtilis cells execute a gene expression program resulting in the formation of stress-resistant spores. Sporulation master regulator, Spo0A, is activated by a phosphorelay and controls the expression of a multitude of genes, including the forespore-specific sigma factor σ(F) and the mother cell-specific sigma factor σ(E). Identification of the system-level mechanism of the sporulation decision is hindered by a lack of direct control over Spo0A activity. This limitation can be overcome by using a synthetic system in which Spo0A activation is controlled by inducing expression of phosphorelay kinase KinA. This induction results in a switch-like increase in the number of sporulating cells at a threshold of KinA. Using a combination of mathematical modeling and single-cell microscopy, we investigate the origin and physiological significance of this ultrasensitive threshold. The results indicate that the phosphorelay is unable to achieve a sufficiently fast and ultrasensitive response via its positive feedback architecture, suggesting that the sporulation decision is made downstream. In contrast, activation of σ(F) in the forespore and of σ(E) in the mother cell compartments occurs via a cascade of coherent feed-forward loops, and thereby can produce fast and ultrasensitive responses as a result of KinA induction. Unlike σ(F) activation, σ(E) activation in the mother cell compartment only occurs above the KinA threshold, resulting in completion of sporulation. Thus, ultrasensitive σ(E) activation explains the KinA threshold for sporulation induction. We therefore infer that under uncertain conditions, cells initiate sporulation but postpone making the sporulation decision to average stochastic fluctuations and to achieve a robust population response.


Assuntos
Bacillus subtilis/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Sequência de Bases , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Modelos Biológicos , Proteínas Quinases/genética , Fator sigma/genética , Fator sigma/fisiologia , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia , Biologia de Sistemas , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
5.
Mol Microbiol ; 90(1): 181-94, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23927765

RESUMO

Sporulation initiation in Bacillus subtilis is controlled by the phosphorylated form of the master regulator Spo0A which controls transcription of a multitude of sporulation genes. In this study, we investigated the importance of temporal dynamics of phosphorylated Spo0A (Spo0A∼P) accumulation by rewiring the network controlling its phosphorylation. We showed that simultaneous induction of KinC, a kinase that can directly phosphorylate Spo0A, and Spo0A itself from separately controlled inducible promoters can efficiently trigger sporulation even under nutrient rich conditions. However, the sporulation efficiency in this artificial two-component system was significantly impaired when KinC and/or Spo0A induction was too high. Using mathematical modelling, we showed that gradual accumulation of Spo0A∼P is essential for the proper temporal order of the Spo0A regulon expression, and that reduction in sporulation efficiency results from the reversal of that order. These insights led us to identify premature repression of DivIVA as one possible explanation for the adverse effects of accelerated accumulation of Spo0A∼P on sporulation. Moreover, we found that positive feedback resulting from autoregulation of the native spo0A promoter leads to robust control of Spo0A∼P accumulation kinetics. Thus we propose that a major function of the conserved architecture of the sporulation network is controlling Spo0A activation dynamics.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Processamento de Proteína Pós-Traducional , Esporos Bacterianos/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Bacillus subtilis/genética , Proteínas de Ciclo Celular/metabolismo , Meios de Cultura/química , Expressão Gênica , Modelos Teóricos , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Esporos Bacterianos/genética
6.
J Bacteriol ; 193(22): 6113-22, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926229

RESUMO

Upon starvation, Bacillus subtilis cells switch from growth to sporulation. It is believed that the N-terminal sensor domain of the cytoplasmic histidine kinase KinA is responsible for detection of the sporulation-specific signal(s) that appears to be produced only under starvation conditions. Following the sensing of the signal, KinA triggers autophosphorylation of the catalytic histidine residue in the C-terminal domain to transmit the phosphate moiety, via phosphorelay, to the master regulator for sporulation, Spo0A. However, there is no direct evidence to support the function of the sensor domain, because the specific signal(s) has never been found. To investigate the role of the N-terminal sensor domain, we replaced the endogenous three-PAS repeat in the N-terminal domain of KinA with a two-PAS repeat derived from Escherichia coli and examined the function of the resulting chimeric protein. Despite the introduction of a foreign domain, we found that the resulting chimeric protein, in a concentration-dependent manner, triggered sporulation by activating Spo0A through phosphorelay, irrespective of nutrient availability. Further, by using chemical cross-linking, we showed that the chimeric protein exists predominantly as a tetramer, mediated by the N-terminal domain, as was found for KinA. These results suggest that tetramer formation mediated by the N-terminal domain, regardless of the origin of the protein, is important and sufficient for the kinase activity catalyzed by the C-terminal domain. Taken together with our previous observations, we propose that the primary role of the N-terminal domain of KinA is to form a functional tetramer, but not for sensing an unknown signal.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Esporos Bacterianos/enzimologia , Esporos Bacterianos/genética
7.
J Bacteriol ; 192(15): 3870-82, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20511506

RESUMO

Sporulation in Bacillus subtilis is controlled by a complex gene regulatory circuit that is activated upon nutrient deprivation. The initial process is directed by the phosphorelay, involving the major sporulation histidine kinase (KinA) and two additional phosphotransferases (Spo0F and Spo0B), that activates the master transcription factor Spo0A. Little is known about the initial event and mechanisms that trigger sporulation. Using a strain in which the synthesis of KinA is under the control of an IPTG (isopropyl-beta-d-thiogalactopyranoside)-inducible promoter, here we demonstrate that inducing the synthesis of the KinA beyond a certain level leads to the entry of the irreversible process of sporulation irrespective of nutrient availability. Moreover, the engineered cells expressing KinA under a sigma(H)-dependent promoter that is similar to but stronger than the endogenous kinA promoter induce sporulation during growth. These cells, which we designated COS (constitutive sporulation) cells, exhibit the morphology and properties of sporulating cells and express sporulation marker genes under nutrient-rich conditions. Thus, we created an engineered strain displaying two cell cycles (growth and sporulation) integrated into one cycle irrespective of culture conditions, while in the wild type, the appropriate cell fate decision is made depending on nutrient availability. These results suggest that the threshold level of the major sporulation kinase acts as a molecular switch to determine cell fate and may rule out the possibility that the activity of KinA is regulated in response to the unknown signal(s).


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Ciclo Celular , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Fosfotransferases/metabolismo , Proteínas Quinases/genética , Fator sigma/genética , Fator sigma/metabolismo , Esporos Bacterianos/fisiologia
8.
J Natl Cancer Inst ; 110(7): 777-786, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29267866

RESUMO

Background: Immunotherapy has increasingly become a staple in cancer treatment. However, substantial limitations in the durability of response highlight the need for more rational therapeutic combinations. The aim of this study is to investigate how to make tumor cells more sensitive to T-cell-based cancer immunotherapy. Methods: Two pairs of melanoma patient-derived tumor cell lines and their autologous tumor-infiltrating lymphocytes were utilized in a high-throughput screen of 850 compounds to identify bioactive agents that could be used in combinatorial strategies to improve T-cell-mediated killing of tumor cells. RNAi, overexpression, and gene expression analyses were utilized to identify the mechanism underlying the effect of Topoisomerase I (Top1) inhibitors on T-cell-mediated killing. Using a syngeneic mouse model (n = 5 per group), the antitumor efficacy of the combination of a clinically relevant Top1 inhibitor, liposomal irinotecan (MM-398), with immune checkpoint inhibitors was also assessed. All statistical tests were two-sided. Results: We found that Top1 inhibitors increased the sensitivity of patient-derived melanoma cell lines (n = 7) to T-cell-mediated cytotoxicity (P < .001, Dunnett's test). This enhancement is mediated by TP53INP1, whose overexpression increased the susceptibility of melanoma cell lines to T-cell cytotoxicity (2549 cell line: P = .009, unpaired t test), whereas its knockdown impeded T-cell killing of Top1 inhibitor-treated melanoma cells (2549 cell line: P < .001, unpaired t test). In vivo, greater tumor control was achieved with MM-398 in combination with α-PD-L1 or α-PD1 (P < .001, Tukey's test). Prolonged survival was also observed in tumor-bearing mice treated with MM-398 in combination with α-PD-L1 (P = .002, log-rank test) or α-PD1 (P = .008, log-rank test). Conclusions: We demonstrated that Top1 inhibitors can improve the antitumor efficacy of cancer immunotherapy, thus providing the basis for developing novel strategies using Top1 inhibitors to augment the efficacy of immunotherapy.


Assuntos
Imunoterapia Adotiva/métodos , Melanoma/terapia , Linfócitos T Citotóxicos/transplante , Inibidores da Topoisomerase I/uso terapêutico , Animais , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Terapia Combinada , Feminino , Humanos , Irinotecano/uso terapêutico , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/transplante , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/imunologia , Topotecan/uso terapêutico , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nat Commun ; 8(1): 451, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878208

RESUMO

T-cell-based immunotherapies are promising treatments for cancer patients. Although durable responses can be achieved in some patients, many patients fail to respond to these therapies, underscoring the need for improvement with combination therapies. From a screen of 850 bioactive compounds, we identify HSP90 inhibitors as candidates for combination with immunotherapy. We show that inhibition of HSP90 with ganetespib enhances T-cell-mediated killing of patient-derived human melanoma cells by their autologous T cells in vitro and potentiates responses to anti-CTLA4 and anti-PD1 therapy in vivo. Mechanistic studies reveal that HSP90 inhibition results in upregulation of interferon response genes, which are essential for the enhanced killing of ganetespib treated melanoma cells by T cells. Taken together, these findings provide evidence that HSP90 inhibition can potentiate T-cell-mediated anti-tumor immune responses, and rationale to explore the combination of immunotherapy and HSP90 inhibitors.Many patients fail to respond to T cell based immunotherapies. Here, the authors, through a high-throughput screening, identify HSP90 inhibitors as a class of preferred drugs for treatment combination with immunotherapy.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Ipilimumab/farmacologia , Melanoma/terapia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imunoterapia , Interferons/farmacologia , Estimativa de Kaplan-Meier , Melanoma/genética , Melanoma/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Regulação para Cima
10.
Artigo em Inglês | MEDLINE | ID: mdl-23099162

RESUMO

The formation constant of triiodide ions from iodine-iodide equilibrium in aqueous-organic solvent or polymer mixed media have been determined spectrophotometrically at three different temperatures 20, 30 and 40°C. The organic solvents chosen for the study are ethylene glycol, 2-methoxy ethanol, and 2-ethoxy ethanol while the polymers include polyethylene glycol (PEG), hydroxypropyl cellulose (HPC) or polyethylene oxide (PEO). Effect of a surfactant on the formation of triiodide ions in the mixed media has also been investigated. Though presence of the organic solvents led to an increase in the triiodide formation except for 2-ethoxy ethanol mixed media at low percentage, the increase in presence of PEG or the other polymer mixed media even at very low percentage was much higher as compared to those in ethylene glycol or its homologues. The increase in the formation constant has been discussed in terms of changes in its solvation properties and the hydrophobic character of the mixed media besides the solvent dielectric effects. The sharp increase in triiodide formation in presence of the polymer under study suggests the possibility of iodine being present as triiodide or other higher polyiodides in the inclusion complexes of iodine with other polymers like starch or PVA. The decrease in the triiodide formation in presence of surfactant micelles may, however, be attributed to solubilization of iodine by the micelles. Iodine was found to be better solubilized in TX-100 micelles as compared to SDS micelles.


Assuntos
Iodetos/química , Iodo/química , Tensoativos/química , Celulose/análogos & derivados , Celulose/química , Íons/química , Micelas , Polietilenoglicóis/química , Dodecilsulfato de Sódio/química , Solubilidade , Solventes/química , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA