Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 198(7): 928-940, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29518341

RESUMO

RATIONALE: Patients with chronic obstructive pulmonary disease (COPD) have a higher prevalence of lung cancer. The chronic inflammation associated with COPD probably promotes the earliest stages of carcinogenesis. However, once tumors have progressed to malignancy, the impact of COPD on the tumor immune microenvironment remains poorly defined, and its effects on immune-checkpoint blockers' efficacy are still unknown. OBJECTIVES: To study the impact of COPD on the immune contexture of non-small cell lung cancer. METHODS: We performed in-depth immune profiling of lung tumors by immunohistochemistry and we determined its impact on patient survival (n = 435). Tumor-infiltrating T lymphocyte (TIL) exhaustion by flow cytometry (n = 50) was also investigated. The effectiveness of an anti-PD-1 (programmed cell death-1) treatment (nivolumab) was evaluated in 39 patients with advanced-stage non-small cell lung cancer. All data were analyzed according to patient COPD status. MEASUREMENTS AND MAIN RESULTS: Remarkably, COPD severity is positively correlated with the coexpression of PD-1/TIM-3 (T-cell immunoglobulin and mucin domain-containing molecule-3) by CD8 T cells. In agreement, we observed a loss of CD8 T cell-associated favorable clinical outcome in COPD+ patients. Interestingly, a negative prognostic value of PD-L1 (programmed cell death ligand 1) expression by tumor cells was observed only in highly CD8 T cell-infiltrated tumors of COPD+ patients. Finally, data obtained on 39 patients with advanced-stage non-small cell lung cancer treated by an anti-PD-1 antibody showed longer progression-free survival in COPD+ patients, and also that the association between the severity of smoking and the response to nivolumab was preferentially observed in COPD+ patients. CONCLUSIONS: COPD is associated with an increased sensitivity of CD8 tumor-infiltrating T lymphocytes to immune escape mechanisms developed by tumors, thus suggesting a higher sensitivity to PD-1 blockade in patients with COPD.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Microambiente Tumoral/imunologia , Idoso , Análise de Variância , Biópsia por Agulha , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Doença Pulmonar Obstrutiva Crônica/mortalidade , Doença Pulmonar Obstrutiva Crônica/patologia , Estudos Retrospectivos , Medição de Risco , Análise de Sobrevida
2.
Commun Biol ; 5(1): 1416, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566320

RESUMO

On one hand, regulatory T cells (Tregs) play an immunosuppressive activity in most solid tumors but not all. On the other hand, the organization of tumor-infiltrating immune cells into tertiary lymphoid structures (TLS) is associated with long-term survival in most cancers. Here, we investigated the role of Tregs in the context of Non-Small Cell Lung Cancer (NSCLC)-associated TLS. We observed that Tregs show a similar immune profile in TLS and non-TLS areas. Autologous tumor-infiltrating Tregs inhibit the proliferation and cytokine secretion of CD4+ conventional T cells, a capacity which is recovered by antibodies against Cytotoxic T-Lymphocyte-Associated protein-4 (CTLA-4) and Glucocorticoid-Induced TNFR-Related protein (GITR) but not against other immune checkpoint (ICP) molecules. Tregs in the whole tumor, including in TLS, are associated with a poor outcome of NSCLC patients, and combination with TLS-dendritic cells (DCs) and CD8+ T cells allows higher overall survival discrimination. Thus, Targeting Tregs especially in TLS may represent a major challenge in order to boost anti-tumor immune responses initiated in TLS.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T Reguladores , Linfócitos T CD8-Positivos , Neoplasias Pulmonares/patologia , Estruturas Linfoides Terciárias/metabolismo , Estruturas Linfoides Terciárias/patologia , Linfócitos do Interstício Tumoral
3.
Front Immunol ; 12: 628375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113337

RESUMO

Background: Interferon beta (IFNß) has been prescribed as a first-line disease-modifying therapy for relapsing-remitting multiple sclerosis (RRMS) for nearly three decades. However, there is still a lack of treatment response markers that correlate with the clinical outcome of patients. Aim: To determine a combination of cellular and molecular blood signatures associated with the efficacy of IFNß treatment using an integrated approach. Methods: The immune status of 40 RRMS patients, 15 of whom were untreated and 25 that received IFNß1a treatment (15 responders, 10 non-responders), was investigated by phenotyping regulatory CD4+ T cells and naïve/memory T cell subsets, by measurement of circulating IFNα/ß proteins with digital ELISA (Simoa) and analysis of ~600 immune related genes including 159 interferon-stimulated genes (ISGs) with the Nanostring technology. The potential impact of HLA class II gene variation in treatment responsiveness was investigated by genotyping HLA-DRB1, -DRB3,4,5, -DQA1, and -DQB1, using as a control population the Milieu Interieur cohort of 1,000 French healthy donors. Results: Clinical responders and non-responders displayed similar plasma levels of IFNß and similar ISG profiles. However, non-responders mainly differed from other subject groups with reduced circulating naïve regulatory T cells, enhanced terminally differentiated effector memory CD4+ TEMRA cells, and altered expression of at least six genes with immunoregulatory function. Moreover, non-responders were enriched for HLA-DQB1 genotypes encoding DQ8 and DQ2 serotypes. Interestingly, these two serotypes are associated with type 1 diabetes and celiac disease. Overall, the immune signatures of non-responders suggest an active disease that is resistant to therapeutic IFNß, and in which CD4+ T cells, likely restricted by DQ8 and/or DQ2, exert enhanced autoreactive and bystander inflammatory activities.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Variação Genética , Cadeias beta de HLA-DQ/genética , Fatores Imunológicos/uso terapêutico , Interferon beta-1a/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Adulto , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Feminino , Cadeias beta de HLA-DQ/imunologia , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Fenótipo , Falha de Tratamento , Adulto Jovem
4.
Front Immunol ; 12: 626776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763071

RESUMO

The presence of tertiary lymphoid structures (TLS) in the tumor microenvironment is associated with better clinical outcome in many cancers. In non-small cell lung cancer (NSCLC), we have previously showed that a high density of B cells within TLS (TLS-B cells) is positively correlated with tumor antigen-specific antibody responses and increased intratumor CD4+ T cell clonality. Here, we investigated the relationship between the presence of TLS-B cells and CD4+ T cell profile in NSCLC patients. The expression of immune-related genes and proteins on B cells and CD4+ T cells was analyzed according to their relationship to TLS-B density in a prospective cohort of 56 NSCLC patients. We observed that tumor-infiltrating T cells showed marked differences according to TLS-B cell presence, with higher percentages of naïve, central-memory, and activated CD4+ T cells and lower percentages of both immune checkpoint (ICP)-expressing CD4+ T cells and regulatory T cells (Tregs) in the TLS-Bhigh tumors. A retrospective study of 538 untreated NSCLC patients showed that high TLS-B cell density was even able to counterbalance the deleterious impact of high Treg density on patient survival, and that TLS-Bhigh Treglow patients had the best clinical outcomes. Overall, the correlation between the density of TLS-Bhigh tumors with early differentiated, activated and non-regulatory CD4+ T cell cells suggest that B cells may play a central role in determining protective T cell responses in NSCLC patients.


Assuntos
Linfócitos B/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Transcriptoma , Microambiente Tumoral/imunologia
5.
Methods Mol Biol ; 1845: 47-69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30141007

RESUMO

Tertiary lymphoid structures (TLS) are considered as genuine markers of inflammation. Their presence within inflamed tissues or within the tumor microenvironment has been associated with the local development of an active immune response. While high densities of TLS are correlated with disease severity in autoimmune diseases or during graft rejection, it has been associated with longer patient survival in many cancer types. Their efficient visualization and quantification within human tissues may represent new tools for helping clinicians in adjusting their therapeutic strategy. Some immunohistochemistry (IHC) protocols are already used in the clinic to appreciate the level of immune infiltration in formalin-fixed, paraffin-embedded (FFPE) tissues. However, the use of two or more markers may sometimes be useful to better characterize this immune infiltrate, especially in the case of TLS. Besides the growing development of multiplex labeling approaches, imaging can also be used to overcome some technical difficulties encountered during the immunolabeling of tissues with several markers.This chapter describes IHC methods to visualize in a human tissue (tumoral or not) the presence of TLS. These methods are based on the immunostaining of four TLS-associated immune cell populations, namely follicular B cells, follicular dendritic cells (FDCs), mature dendritic cells (mDCs), and follicular helper T cells (TFH), together with non-TFH T cells. Methodologies for subsequent quantification of TLS density are also proposed, as well as a virtual multiplexing method based on image registration using the open-source software ImageJ (IJ), aiming at co-localizing several immune cell populations from different IHC stainings performed on serial tissue sections.


Assuntos
Microambiente Celular/imunologia , Imuno-Histoquímica , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Biomarcadores , Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica/métodos , Linfócitos/imunologia , Linfócitos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Software , Estruturas Linfoides Terciárias/metabolismo , Microambiente Tumoral/imunologia
6.
Methods Mol Biol ; 1845: 189-204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30141014

RESUMO

The tumor microenvironment is a complex network of interacting cells composed of immune and nonimmune cells. It has been reported that the composition of the immune contexture has a significant impact on tumor growth and patient survival in different solid tumors. For instance, we and other groups have previously demonstrated that a strong infiltration of T-helper type 1 (Th1) or memory CD8+ T cells is associated with long-term survival of cancer patients. Nevertheless, the prognostic value of the other immune populations, namely regulatory T cells (Treg), B cells, and gamma delta (γδ) T cells, remains a matter of debate. Herein, we describe novel flow cytometry-based strategies to sort out these different immune populations in order to evaluate their role in non-small cell lung cancer (NSCLC).


Assuntos
Citometria de Fluxo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/metabolismo , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Estruturas Linfoides Terciárias/genética , Estruturas Linfoides Terciárias/patologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA