Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837941

RESUMO

The absolute band edge positions and work function (Φ) are the key electronic properties of metal oxides that determine their performance in electronic devices and photocatalysis. However, experimental measurements of these properties often show notable variations, and the mechanisms underlying these discrepancies remain inadequately understood. In this work, we focus on ceria (CeO2), a material renowned for its outstanding oxygen storage capacity, and combine theoretical and experimental techniques to demonstrate environmental modifications of its ionization potential (IP) and Φ. Under O-deficient conditions, reduced ceria exhibits a decreased IP and Φ with significant sensitivity to defect distributions. In contrast, the IP and Φ are elevated in O-rich conditions due to the formation of surface peroxide species. Surface adsorbates and impurities can further augment these variabilities under realistic conditions. We rationalize the shifts in energy levels by separating the individual contributions from bulk and surface factors, using hybrid quantum mechanical/molecular mechanical (QM/MM) embedded-cluster and periodic density functional theory (DFT) calculations supported by interatomic-potential-based electrostatic analyses. Our results highlight the critical role of on-site electrostatic potentials in determining the absolute energy levels in metal oxides, implying a dynamic evolution of band edges under catalytic conditions.

2.
Inorg Chem ; 63(1): 416-430, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38101319

RESUMO

Bismuth-based coordination complexes are advantageous over other metal complexes, as bismuth is the heaviest nontoxic element with high spin-orbit coupling and potential optoelectronics applications. Herein, four bismuth halide-based coordination complexes [Bi2Cl6(phen-thio)2] (1), [Bi2Br6(phen-thio)2] (2), [Bi2I6(phen-thio)2] (3), and [Bi2I6(phen-Me)2] (4) were synthesized, characterized, and subjected to detailed photophysical studies. The complexes were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and NMR studies. Spectroscopic analyses of 1-4 in solutions of different polarities were performed to understand the role of the organic and inorganic components in determining the ground- and excited-state properties of the complexes. The photophysical properties of the complexes were characterized by ground-state absorption, steady-state photoluminescence, microsecond time-resolved photoluminescence, and absorption spectroscopy. Periodic density functional theory (DFT) calculations were performed on the solid-state structures to understand the role of the organic and inorganic parts of the complexes. The studies showed that changing the ancillary ligand from chlorine (Cl) and bromine (Br) to iodine (I) bathochromically shifts the absorption band along with enhancing the absorption coefficient. Also, changing the halides (Cl, Br to I) affects the photoluminescent quantum yields of the ligand-centered (LC) emissive state without markedly affecting the lifetimes. The combined results confirmed that ground-state properties are strongly influenced by the inorganic part, and the lower-energy excited state is LC. This study paves the way to design novel bismuth coordination complexes for optoelectronic applications by rigorously choosing the ligands and bismuth salt.

3.
Acc Chem Res ; 54(1): 155-168, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33332097

RESUMO

ConspectusSeparating and purifying chemicals without heat would go a long way toward reducing the overall energy consumption and the harmful environmental footprint of the process. Molecular separation processes are critical for the production of raw materials, commodity chemicals, and specialty fuels. Over 50% of the energy used in the production of these materials is spent on separation and purification processes, which primarily includes vacuum and cryogenic distillations. Chemical manufacturers are now investigating modest thermal approaches, such as membranes and adsorbent materials, as they are more cognizant than ever of the need to save energy and prevent pollution. Porous materials, such as zeolites, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), have dominated the field of industrial separations as their high surface areas and robust pores make them ideal candidates for molecular separations of gases and hydrocarbons. Separation processes involving porous materials can save 70%-90% of energy costs compared to that of thermally driven distillations. However, most porous materials have low thermal, chemical, and moisture stability, in addition to limited solution processability, which tremendously constrain their broad industrial translation. Intrinsically porous molecular materials (IPMs) are a subclass of porous molecular materials that are comprised of molecular host macrocycles or cages that absorb guests in or around their intrinsic cavity. IPMs range from discrete porous molecules to assemblies with amorphous or highly crystalline structures that are held together by weak supramolecular interactions. Compared to the coordination or dynamic covalent bond-constructed porous frameworks, IPMs possess high thermal, chemical, and moisture stability and maintain their porosity under critical conditions. Moreover, the intrinsic porosity endows IPMs with excellent host-guest properties in solid, liquid (organic or aqueous), and gas states, which can be further utilized to construct diverse separation strategies, such as solid-gas adsorption, solid-liquid absorption, and liquid-liquid extraction. The diversity of host-guest interactions in the engineered IPMs affords a plethora of possibilities for the development of the ideal "molecular sieves". Herein, we present a different take on the applicability of intrinsically porous materials such as cyclodextrin (CD), cucurbiturils (CB), pillararene (P), trianglamines (T), and porous organic cages (POCs) that showed an impressive performance in gas purification and benzene derivatives separation. IPMs can be easily scaled up and are quite stable and solution processable that consequently facilitates a favorable technological transformation from the traditional energy-intensive separations. We will account for the main advances in molecular host-guest chemistry to design "on-demand" separation processes and also outline future challenges and opportunities for this promising technology.

4.
J Am Chem Soc ; 143(11): 4090-4094, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33691071

RESUMO

The separation of styrene (ST) and ethylbenzene (EB) mixtures is of great importance in the petrochemical and plastics industries. Current technology employs multiple cycles of energy-intensive distillation due to the very close boiling points of ST and EB. Here, we show that the molecular sieving properties of easily scalable and stable trianglimine crystals offer ultrahigh selectivity (99%) for styrene separation. The unique molecular sieving properties of trianglimine crystals are corroborated by DFT calculations, suggesting that the incorporation of the nonplanar EB requires a significant deformation of the macrocyclic cavity whereas the planar ST can be easily accommodated in the cavity.

5.
J Am Chem Soc ; 142(37): 15823-15829, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32786789

RESUMO

Predicting, controlling, understanding, and elucidating the phase transition from gel to crystal are highly important for the development of various functional materials with macroscopic properties. Here, we show a detailed and systematic description of the self-assembly process of an enantiopure trianglimine macrocyclic host from gel to single crystals. This proceeds via an unprecedented formation of capsule-like or right-handed helix superstructures as metastable products, depending on the nature of the guest molecule. Mesitylene promotes the formation of capsule-like superstructures, whereas toluene results in the formation of helices as intermediates during the course of crystallization. Single-crystal results demonstrate that the crystals obtained via the direct self-assembly from the gel phase are different from the crystals obtained from the stepwise assembly of the intermediate superstructures. Hence, investigating the phase-transition superstructures that self-assemble through the process of crystallization can unravel new molecular ordering with unexplored host-guest interactions. Such understanding will provide further tools to control hierarchical assemblies at the molecular level and consequently design or dictate the properties of evolved materials.


Assuntos
Derivados de Benzeno/química , Compostos Macrocíclicos/química , Cristalização , Tamanho da Partícula , Propriedades de Superfície
6.
Phys Chem Chem Phys ; 22(8): 4731-4740, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32057048

RESUMO

The origin of green fluorescence in unsymmetrical four-ring bent-core liquid crystals (BCLCs) is not understood clearly. There is no analysis of the photo-physical properties, in particular, the excited state dynamical behaviour, of these molecules. Because of the availability of two proton transfer sites in these systems, there is no clear explanation of the involvement of single or double proton transfer reactions in the origin of the large Stokes shifted green fluorescence band. Therefore, we employ the femtosecond transient absorption spectroscopy technique to recognize the formation of transient species in the excited state and its associated dynamics in the femto-picosecond time domain. In order to validate the experimental photo-physical properties, the time-dependent density functional theory (TDDFT) calculations have been performed. Our results indicate that the four-ring bent-core system is an excellent example of systems exhibiting two proton transfer reactions in a sequential process. Further, these two proton transfer sites are not electronically coupled to each other; therefore, monoketo and diketo tautomers exhibit very close absorption and emission positions. The large Stokes shifted green emission in these systems is mainly contributed by the monoketo tautomer (MK-C*). The linking ester functional group of both sites plays a significant role in controlling the rate of proton transfer reactions. A good correlation is observed between theoretical and experimental results.

7.
Phys Chem Chem Phys ; 22(15): 7685-7698, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32031552

RESUMO

In this work, we demonstrate doping graphene oxide (GO) films using a low power atmospheric pressure plasma jet (APPJ) with subsequent tuning of the work function. The surface potential of the plasma functionalized GO films could be tuned by 120 ± 10 mV by varying plasma parameters. X-ray spectroscopy used to probe these changes in electronic structure of systematically functionalized GO films by plasma. Detailed investigation using X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy revealed the reactive nitrogen species in the plasma induce finite changes in the surface chemistry of the GO films, introducing additional density of states near the top of the valence band edge. Nitrogen introduced by the atmospheric pressure plasma is predominantly in a graphitic configuration with a varying concentration of pyridinic nitrogen. Additionally, evidence of gradual de-epoxidation of these GO films with increasing plasma exposure was also observed. We attribute this variation in work function values to the configuration of nitrogen in the graphitic structure as revealed by X-ray spectroscopy. With pyridinic nitrogen the electronic states of GO became electron deficient, inducing a p-type doping whereas an increase in graphitic nitrogen increased the electron density of GO leading to an n-type doping effect. Nitrogen doping was also found to decrease the resistivity from 138 MΩ sq-1 to 4 MΩ sq-1. These findings are extremely useful in fabricating heterojunction devices like sensors and optoelectronic devices where band structure alignment is key to device performance when GO is used as a charge transport layer. This technique can be extended to other known 2D systems.

8.
Chemistry ; 25(47): 11141-11146, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31250943

RESUMO

Design and synthesis of stable, active and cost-effective electrocatalyst for water splitting applications is an emerging area of research, given the depletion of fossil fuels. Herein, two isostructural NiII redox-active metal-organic frameworks (MOFs) containing flexible tripodal trispyridyl ligand (L) and linear dicarboxylates such as terephthalate (TA) and 2-aminoterphthalate (H2 NTA) are studied for their catalytic activity in oxygen evaluation reaction (OER). The 2D-layered MOFs form 3D hydrogen bonded frameworks containing one-dimensional hydrophilic channels that are filled with water molecules. The electrochemical studies reveal that MOFs display an efficient catalytic activity towards oxygen evolution reaction in alkaline conditions with an overpotential as low as 356 mV. Further, these 2D-MOFs exhibit excellent ability to adsorb water vapor (180-230 cc g-1 at 273 K) and CO2 (33 cc g-1 at 273 K). The presence of hydrophilic functionality in the frameworks was found to significantly enhance the electrocatalytic activity as well as H2 O sorption.

9.
Chemistry ; 24(22): 5760-5764, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29485716

RESUMO

The development of generic strategy is essential for the construction of higher order supramolecular assemblies from the mixture of molecular components. Such higher order aggregations are possible through a self-sorting phenomenon, which is not well-explored in gel materials. Here, first examples of self-sorting in the coordination polymer (CP) based gels have been explored using three and four component systems. The self-sorting phenomenon has been monitored through a [2+2] photochemical reaction in the gel state and characterized by 1 H NMR, diffuse reflectance spectroscopy (DRS) and single crystal XRD analyses. Furthermore, AgI was shown to act as a supramolecular catalyst for the [2+2] photochemical reaction in gels.

10.
BMC Plant Biol ; 16(1): 158, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27411911

RESUMO

BACKGROUND: Family members of sucrose non-fermenting 1-related kinase 2 (SnRK2), being plant-specific serine/threonine protein kinases, constitute the central core of abscisic acid (ABA)-dependent and ABA-independent signaling pathways, and are key regulators of abiotic stress adaptation in plants. We report here the functional characterization of SAPK9 gene, one of the 10 SnRK2s of rice, through developing gain-of-function and loss-of-function phenotypes by transgenesis. RESULTS: The gene expression profiling revealed that the abundance of single gene-derived SAPK9 transcript was significantly higher in drought-tolerant rice genotypes than the drought-sensitive ones, and its expression was comparatively greater in reproductive stage than the vegetative stage. The highest expression of SAPK9 gene in drought-tolerant Oryza rufipogon prompted us to clone and characterise the CDS of this allele in details. The SAPK9 transcript expression was found to be highest in leaf and upregulated during drought stress and ABA treatment. In silico homology modelling of SAPK9 with Arabidopsis OST1 protein showed the bilobal kinase fold structure of SAPK9, which upon bacterial expression was able to phosphorylate itself, histone III and OsbZIP23 as substrates in vitro. Transgenic overexpression (OE) of SAPK9 CDS from O. rufipogon in a drought-sensitive indica rice genotype exhibited significantly improved drought tolerance in comparison to transgenic silencing (RNAi) lines and non-transgenic (NT) plants. In contrast to RNAi and NT plants, the enhanced drought tolerance of OE lines was concurrently supported by the upgraded physiological indices with respect to water retention capacity, soluble sugar and proline content, stomatal closure, membrane stability, and cellular detoxification. Upregulated transcript expressions of six ABA-dependent stress-responsive genes and increased sensitivity to exogenous ABA of OE lines indicate that the SAPK9 is a positive regulator of ABA-mediated stress signaling pathways in rice. The yield-related traits of OE lines were augmented significantly, which resulted from the highest percentage of fertile pollens in OE lines when compared with RNAi and NT plants. CONCLUSION: The present study establishes the functional role of SAPK9 as transactivating kinase and potential transcriptional activator in drought stress adaptation of rice plant. The SAPK9 gene has potential usefulness in transgenic breeding for improving drought tolerance and grain yield in crop plants.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Proteínas Quinases/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Osmose , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Proteínas Quinases/genética , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sacarose/metabolismo
11.
Transgenic Res ; 25(5): 561-73, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27012546

RESUMO

To meet current challenges in agriculture, genome editing using sequence-specific nucleases (SSNs) is a powerful tool for basic and applied plant biology research. Here, we describe the principle and application of available genome editing tools, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat associated CRISPR/Cas9 system. Among these SSNs, CRISPR/Cas9 is the most recently characterized and rapidly developing genome editing technology, and has been successfully utilized in a wide variety of organisms. This review specifically illustrates the power of CRISPR/Cas9 as a tool for plant genome engineering, and describes the strengths and weaknesses of the CRISPR/Cas9 technology compared to two well-established genome editing tools, ZFNs and TALENs.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Plantas Geneticamente Modificadas/genética , Marcação de Genes , Plantas/genética , Nucleases de Dedos de Zinco/genética
12.
World J Microbiol Biotechnol ; 32(4): 62, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26925624

RESUMO

Emergence of resistant insects limits the sustainability of Bacillus thuringiensis (Bt) transgenic crop plants for insect management. Beside this, the presence of unwanted marker gene(s) in the transgenic crops is also a major environmental and health concern. Thus, development of marker free transgenic crop plants expressing a new class of toxin having a different mortality mechanism is necessary for resistance management. In a previous study, we generated an engineered Cry2Aa (D42/K63F/K64P) toxin which has a different mortality mechanism as compared to first generation Bt toxin Cry1A, and this engineered toxin was found to enhance 4.1-6.6-fold toxicity against major lepidopteran insect pests of crop plants. In the present study, we have tested the potency of this engineered synthetic Cry2Aa (D42/K63F/K64P) toxin as a candidate in the development of insect resistant transgenic tobacco plants. Simultaneously, we have eliminated the selectable marker gene from the Cry2Aa (D42/K63F/K64P) expressing tobacco plants by exploiting the Cre/lox mediated recombination methodology, and successfully developed marker free T2 transgenic tobacco plants expressing the engineered Cry2Aa toxin. Realtime and western blot analysis demonstrated the expression of engineered toxin gene in transgenic plants. Insect feeding assays revealed that the marker free T2 progeny of transgenic plants expressing Cry2Aa (D42/K63F/K64P) toxin showed 82-92 and 52-61 % mortality to cotton leaf worm (CLW) and cotton bollworm (CBW) respectively. Thus, this engineered Cry2Aa toxin could be useful for the generation of insect resistant transgenic Bt lines which will protect the crop damages caused by different insect pests such as CLW and CBW.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Nicotiana/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Resistência à Doença , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Lepidópteros/efeitos dos fármacos , Controle Biológico de Vetores , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Engenharia de Proteínas , Nicotiana/genética , Nicotiana/parasitologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-38932607

RESUMO

In electrochemical energy storage devices, the interface between the electrode and the electrolyte plays a crucial role. A solid electrolyte interphase (SEI) is formed on the electrode surface due to spontaneous decomposition of the electrolyte, which in turn controls the dynamics of ion migration during charge and discharge cycles. However, the dynamic nature of the SEI means that its chemical structure evolves over time and as a function of the applied bias; thus, a true operando study is extremely valuable. X-ray photoelectron spectroscopy (XPS) is a widely used technique to understand the surface electronic and chemical properties, but the use of ultrahigh vacuum in standard instruments is a major hurdle for their utilization in measuring wet electrochemical processes. Herein, we introduce a 3-electrode electrochemical cell to probe the behavior of Na ions and the formation of SEI at the interface of an ionic liquid (IL) electrolyte and an aluminum electrode under operando conditions. A system containing 0.5 molar NaTFSI dissolved in the IL [BMIM][TFSI] was investigated using an Al working electrode and Pt counter and reference electrodes. By optimizing the scan rate of both XPS and cyclic voltammetry (CV) techniques, we captured the formation and evolution of SEI chemistry using real-time spectra acquisition techniques. A CV scan rate of 2 mVs-1 was coupled with XPS snapshot spectra collected at 10 s per core level. The technique demonstrated here provides a platform for the chemical analysis of materials beyond batteries.

14.
Adv Healthc Mater ; : e2401117, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848965

RESUMO

The endoplasmic reticulum (ER) plays an important role in protein synthesis and its disruption can cause protein unfolding and misfolding. Accumulation of such proteins leads to ER stress, which ultimately promotes many diseases. Routine screening of ER activity in immune cells can flag serious conditions at early stages, but the current clinically used bio-probes have limitations. Herein, an ER-specific fluorophore based on a biocompatible benzothiadiazole-imine cage (BTD-cage) with excellent photophysical properties is developed. The cage outperforms commercially available ER stains in long-term live cell imaging with no fading or photobleaching over time. The cage is responsive to different levels of ER stress where its fluorescence increases accordingly. Incorporating the bio-probe into an immune disorder model, a 6-, 21-, and 48-fold increase in intensity is shown in THP-1, Raw 246.7, and Jurkat cells, respectively (within 15 min). These results strongly support that this system can be used for rapid visual and selective detection of ER stress. It is envisaged that tailoring molecular interactions and molecular recognition using supramolecular improved fluorophores can expand the library of biological probes for enhanced selectivity and targetability toward cellular organelles.

15.
Dalton Trans ; 53(9): 4005-4009, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38314611

RESUMO

Chemically and thermally stable permanently porous coordination cages are appealing candidates for separations, catalysis, and as the porous component of new porous liquids. However, many of these applications have not turned to microporous cages as a result of their poor solubility and thermal or hydrolytic stability. Here we describe the design and modular synthesis of iron and cobalt cages where the carboxylate groups of the bridging ligands of well-known calixarene capped coordination cages have been replaced with more basic triazole units. The resultingly higher M-L bond strengths afford highly stable cages that are amenable to modular synthetic approaches and potential functionalization or modification. Owing to the robust nature of these cages, they are highly processable and are isolable in various physical states with tunable porosity depending on the solvation methods used. As the structural integrity of the cages is maintained upon high activation temperatures, apparent losses in porosity can be mediated by resolvation and crystallization or precipitation.

16.
J Mater Chem C Mater ; 11(21): 6943-6950, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37274026

RESUMO

Polydiketopyrrolopyrrole terthiophene (DPP3T) is an organic semiconducting polymer that has been widely investigated as the active layer within organic electronic devices, such as photovoltaics and bioelectronic sensors. To facilitate interfacing between biological systems and organic semiconductors it is crucial to tune the material properties to support not only cell adhesion, but also proliferation and growth. Herein, we highlight the potential of molecular doping to judiciously modulate the surface properties of DPP3T and investigate the effects on Schwann cell behaviour on the surface. By using p-type dopants FeCl3 and Magic Blue, we successfully alter the topography of DPP3T thin films, which in turn alters cell behaviour of a Schwann cell line on the surfaces of the films over the course of 48 hours. Cell numbers are significantly increased within both DPP3T doped films, as well as cells possessing larger, more spread out morphology indicated by cell size and shape analysis. Furthermore, the viability of the Schwann cells seeded on the surfaces of the films was not significantly lowered. The use of dopants for influencing cell behaviour on semiconducting polymers holds great promise for improving the cell-device interface, potentially allowing better integration of cells and devices at the initial time of introduction to a biological environment.

17.
Nat Commun ; 14(1): 1321, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898996

RESUMO

The solid electrolyte interphase in rechargeable Li-ion batteries, its dynamics and, significantly, its nanoscale structure and composition, hold clues to high-performing and safe energy storage. Unfortunately, knowledge of solid electrolyte interphase formation is limited due to the lack of in situ nano-characterization tools for probing solid-liquid interfaces. Here, we link electrochemical atomic force microscopy, three-dimensional nano-rheology microscopy and surface force-distance spectroscopy, to study, in situ and operando, the dynamic formation of the solid electrolyte interphase starting from a few 0.1 nm thick electrical double layer to the full three-dimensional nanostructured solid electrolyte interphase on the typical graphite basal and edge planes in a Li-ion battery negative electrode. By probing the arrangement of solvent molecules and ions within the electric double layer and quantifying the three-dimensional mechanical property distribution of organic and inorganic components in the as-formed solid electrolyte interphase layer, we reveal the nanoarchitecture factors and atomistic picture of initial solid electrolyte interphase formation on graphite-based negative electrodes in strongly and weakly solvating electrolytes.

18.
Chem Sci ; 13(24): 7341-7346, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799823

RESUMO

Fluorescent microscopy is a powerful tool for studying the cellular dynamics of biological systems. Small-molecule organic fluorophores are the most commonly used for live cell imaging; however, they often suffer from low solubility, limited photostability and variable targetability. Herein, we demonstrate that a tautomeric organic cage, OC1, has high cell permeability, photostability and selectivity towards the mitochondria. We further performed a structure-activity study to investigate the role of the keto-enol tautomerization, which affords strong and consistent fluorescence in dilute solutions through supramolecular self-assembly. Significantly, OC1 can passively diffuse through the cell membrane directly targeting the mitochondria without going through the endosomes or the lysosomes. We envisage that designing highly stable and biocompatible self-assembled fluorophores that can passively diffuse through the cell membrane while selectively targeting specific organelles will push the boundaries of fluorescent microscopy to visualize intricate cellular processes at the single molecule level in live samples.

19.
Chem Sci ; 13(11): 3244-3248, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35414884

RESUMO

The separation of α-olefins and their corresponding isomers continues to be a big challenge for the chemical industry due to their overlapping physical properties and low relative volatility. Herein, pillar[3]trianglamine (P-TA) macrocycles were synthesized for the molecular-sieving-like separation of 1-hexene (1-He) selectively over its positional isomer trans-3-hexene (trans-3-He) in the vapor and liquid state. This allyl-functionalized macrocycle features a deeper cavity compared to the previously reported trianglamine host molecules. Solid-vapor sorption experiments verified the successful separation of 1-He from an equimolar mixture of 1-He and trans-3-He. Single-crystal structures and powder X-ray diffraction patterns suggest that this selective adsorption arises from the formation of a thermodynamically stable host-guest complex between 1-He and P-TA. A reversible transformation between the nonporous guest-free structure and the guest-containing structure shows that 1-He separation can be carried out over multiple cycles without any loss of performance. Significantly, P-TA can separate 1-He directly from a liquid isomeric mixture and thus P-TA modified silica sieves (SBA-15) showed the ability to selectively separate 1-He when utilized as a stationary phase in column chromatography. This capitalizes on the prospects of employing macrocyclic hosts as molecular recognition units in real-life separations for sustainable and energy-efficient industrial practices.

20.
JACS Au ; 2(3): 623-630, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35373199

RESUMO

Biologically derived metal-organic frameworks (Bio-MOFs) are significant, as they can be used in cutting-edge biomedical applications such as targeted gene delivery. Herein, adenine (Ade) and unnatural amino acids coordinate with Zn2+ to produce biocompatible frameworks, KBM-1 and KBM-2, with extremely defined porous channels. They feature an accessible Watson-Crick Ade face that is available for further hydrogen bonding and can load single-stranded DNA (ssDNA) with 13 and 41% efficiency for KBM-1 and KBM-2, respectively. Treatment of these frameworks with thymine (Thy), as a competitive guest for base pairing with the Ade open sites, led to more than 50% reduction of ssDNA loading. Moreover, KBM-2 loaded Thy-rich ssDNA more efficiently than Thy-free ssDNA. These findings support the role of the Thy-Ade base pairing in promoting ssDNA loading. Furthermore, theoretical calculations using the self-consistent charge density functional tight-binding (SCC-DFTB) method verified the role of hydrogen bonding and van der Waals type interactions in this host-guest interface. KBM-1 and KBM-2 can protect ssDNA from enzymatic degradation and release it at acidic pH. Most importantly, these biocompatible frameworks can efficiently deliver genetic cargo with retained activity to the cell nucleus. We envisage that this class of Bio-MOFs can find immediate applicability as biomimics for sensing, stabilizing, and delivering genetic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA