Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(46): e2210562119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343224

RESUMO

The development of chimeric antigen receptor (CAR) T cell therapy has become a critical milestone in modern oncotherapy. Despite the remarkable in vitro effectiveness, the problem of safety and efficacy of CAR T cell therapy against solid tumors is challenged by the lack of tumor-specific antigens required to avoid on-target off-tumor effects. Spatially separating the cytotoxic function of CAR T cells from tumor antigen recognition provided by protein mediators allows for the precise control of CAR T cell cytotoxicity. Here, the high affinity and capability of the bacterial toxin-antitoxin barnase-barstar system were adopted to guide CAR T cells to solid tumors. The complementary modules based on (1) ankyrin repeat (DARPin)-barnase proteins and (2) barstar-based CAR (BsCAR) were designed to provide switchable targeting to tumor cells. The alteration of the DARPin-barnase switches enabled the targeting of different tumor antigens with a single BsCAR. A gradual increase in cytokine release and tunable BsCAR T cell cytotoxicity was achieved by varying DARPin-barnase loads. Switchable BsCAR T cell therapy was able to eradicate the HER2+ ductal carcinoma in vivo. Guiding BsCAR T cells by DARPin-barnase switches provides a universal approach for a controlled multitargeted adoptive immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva , Neoplasias/metabolismo , Antígenos de Neoplasias
2.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673831

RESUMO

Designed ankyrin repeat protein (DARPin) G3 is an engineered scaffold protein. This small (14.5 kDa) targeting protein binds with high affinity to human epidermal growth factor receptor 2 (HER2). HER2 is overexpressed in several cancers. The use of the DARPin G3 for radionuclide therapy is complicated by its high renal reabsorption after clearance via the glomeruli. We tested the hypothesis that a fusion of the DARPin G3 with an albumin-binding domain (ABD) would prevent rapid renal excretion and high renal reabsorption resulting in better tumour targeting. Two fusion proteins were produced, one with the ABD at the C-terminus (G3-ABD) and another at the N-terminus (ABD-G3). Both variants were labelled with 177Lu. The binding properties of the novel constructs were evaluated in vitro and their biodistribution was compared in mice with implanted human HER2-expressing tumours. Fusion with the ABD increased the retention time of both constructs in blood compared with the non-ABD-fused control. The effect of fusion with the ABD depended strongly on the order of the domains in the constructs, resulting in appreciably better targeting properties of [177Lu]Lu-G3-ABD. Our data suggest that the order of domains is critical for the design of targeting constructs based on scaffold proteins.


Assuntos
Receptor ErbB-2 , Animais , Feminino , Humanos , Camundongos , Albuminas/metabolismo , Repetição de Anquirina , Linhagem Celular Tumoral , Lutécio , Ligação Proteica , Domínios Proteicos , Radioisótopos , Compostos Radiofarmacêuticos/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Distribuição Tecidual , Terapia de Alvo Molecular
3.
Curr Issues Mol Biol ; 45(10): 8112-8125, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37886955

RESUMO

Oligomerization of antibody fragments via modification with polyethylene glycol (pegylation) may alter their function and properties, leading to a multivalent interaction of the resulting constructs with the target antigen. In a recent study, we generated pegylated monomers and multimers of scFv fragments of GD2-specific antibodies using maleimide-thiol chemistry. Multimerization enhanced the antigen-binding properties and demonstrated a more efficient tumor uptake in a syngeneic GD2-positive mouse cancer model compared to monomeric antibody fragments, thereby providing a rationale for improving the therapeutic characteristics of GD2-specific antibody fragments. In this work, we obtained pegylated conjugates of scFv fragments of GD2-specific antibodies with maytansinoids DM1 or DM4 using tetravalent PEG-maleimide (PEG4). The protein products from the two-stage thiol-maleimide reaction resolved by gel electrophoresis indicated that pegylated scFv fragments constituted the predominant part of the protein bands, and most of the scFv formed pegylated monomers and dimers. The conjugates retained the ability to bind ganglioside GD2 comparable to that of the parental scFv fragment and to specifically interact with GD2-positive cells. Both induced significant inhibitory effects in the GD2-positive B78-D14 cell line, in contrast to the GD2-negative B16 cell line. The decrease in the B78-D14 cell viability when treated with scFv-PEG4-DM4 was more prominent than that for scFv-PEG4-DM1, and was characterized by a twofold lower half-maximal inhibitory concentration (IC50). Unlike the parental scFv fragment, the product of scFv and PEG4 conjugation (scFv-PEG4), consisting predominantly of pegylated scFv multimers and monomers, induced direct cell death in the GD2-positive B78-D14 cells. However, the potency of scFv-PEG4 was low in the selected concentration range, thus demonstrating that the cytotoxic effect of DM1 and DM4 within the antibody fragment-drug conjugates was primary. The suggested approach may contribute to development of novel configurations of antibody fragment-drug conjugates for cancer treatment.

4.
Biochem Biophys Res Commun ; 641: 57-60, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36521286

RESUMO

It is generally accepted that the use of two different plasmids with the identical origins of replication in bacteria is not desirable due to their "incompatibility". The utilization of the same bacterial enzymatic apparatus for replication of different plasmids is thought to cause a significant redistribution in favor of one of them. In the present work, examining co-expression of two different fluorescent proteins in Escherichia coli, we have shown that the use of highly homologous plasmids with identical origins of replication and providing resistance to different antibiotics results in high representation of both plasmids in bacteria. Meanwhile, the level of gene expression and the amount of proteins produced may differ and is determined mostly by their sequence rather than by the "incompatibility" of the plasmids.


Assuntos
Replicação do DNA , Escherichia coli , Replicação do DNA/genética , Sequência de Bases , Escherichia coli/genética , Plasmídeos/genética , Proteínas/genética , Bactérias/genética , DNA Bacteriano/genética
5.
Nanotechnology ; 35(7)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37963406

RESUMO

Nuclear medicine presents one of the most promising modalities for efficient non-invasive treatment of a variety of cancers, but the application of radionuclides in cancer therapy and diagnostics is severely limited by their nonspecific tissue accumulation and poor biocompatibility. Here, we explore the use of nanosized metal-organic frameworks (MOFs) as carriers of radionuclides to order to improve their delivery to tumour. To demonstrate the concept, we prepared polymer-coated MIL-101(Cr)-NH2MOFs and conjugated them with clinically utilized radionuclide188Re. The nanoparticles demonstrated high loading efficacy of radionuclide reaching specific activity of 49 MBq mg-1. Pharmacokinetics of loaded MOFs was investigated in mice bearing colon adenocarcinoma. The biological half-life of the radionuclide in blood was (20.9 ± 1.3) h, and nanoparticles enabled it to passively accumulate and retain in the tumour. The radionuclide delivery with MOFs led to a significant decrease of radioactivity uptake by the thyroid gland and stomach as compared with perrhenate salt injection, which is beneficial for reducing the side toxicity of nuclear therapy. The reported data on the functionalization and pharmacokinetics of MIL-101(Cr)-NH2for radionuclide delivery unveils the promising potential of these MOFs for nuclear medicine.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Estruturas Metalorgânicas , Nanopartículas , Medicina Nuclear , Camundongos , Animais , Radioisótopos
6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769161

RESUMO

Pancreatic cancer (PC) is one of the most aggressive malignancies. A combination of targeted therapies could increase the therapeutic efficacy in tumors with heterogeneous target expression. Overexpression of the human epidermal growth factor receptor type 3 (HER3) and the epithelial cell adhesion molecule (EpCAM) in up to 40% and 30% of PCs, respectively, is associated with poor prognosis and highlights the relevance of these targets. Designed ankyrin repeat protein (DARPin) Ec1 fused with the low immunogenic bacterial toxin LoPE provides specific and potent cytotoxicity against EpCAM-expressing cancer cells. Here, we investigated whether the co-targeting of HER3 using the monoclonal antibody seribantumab (MM-121) and of EpCAM using Ec1-LoPE would improve the therapeutic efficacy in comparison to the individual agents. Radiolabeled 99mTc(CO)3-Ec1-LoPE showed specific binding with rapid internalization in EpCAM-expressing PC cells. MM-121 did not interfere with the binding of Ec1-LoPE to EpCAM. Evaluation of cytotoxicity indicated synergism between Ec1-LoPE and MM-121 in vitro. An experimental therapy study using Ec1-LoPE and MM-121 in mice bearing EpCAM- and HER3-expressing BxPC3 xenografts demonstrated the feasibility of the therapy. Further development of the co-targeting approach using HER3 and EpCAM could therefore be justified.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Molécula de Adesão da Célula Epitelial , Xenoenxertos , Estudos de Viabilidade , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Modelos Animais de Doenças , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
7.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674755

RESUMO

Ganglioside GD2 is a well-established target expressed on multiple solid tumors, many of which are characterized by low treatment efficiency. Antibody-drug conjugates (ADCs) have demonstrated marked success in a number of solid tumors, and GD2-directed drug conjugates may also hold strong therapeutic potential. In a recent study, we showed that ADCs based on the approved antibody dinutuximab and the drugs monomethyl auristatin E (MMAE) or F (MMAF) manifested potent and selective cytotoxicity in a panel of tumor cell lines and strongly inhibited solid tumor growth in GD2-positive mouse cancer models. Here, we employed two different GD2-binding moieties-minibodies and scFv fragments that carry variable antibody domains identical to those of dinutuximab, and site-directly conjugated them to MMAE or MMAF by thiol-maleimide chemistry with drug-to-antibody ratios (DAR) of 2 and 1, respectively. Specific binding of the antibody fragment-drug conjugates (FDCs) to GD2 was confirmed in direct ELISA, flow cytometry, and confocal microscopy. Selective cytotoxic and cytostatic effects of the conjugates were observed in GD2-positive but not GD2-negative neuroblastoma and melanoma cell lines. Minibody-based FDCs demonstrated more pronounced cytotoxic effects and stronger antigen binding compared to scFv-based FDCs. The developed molecules may offer considerable practical benefit, since antibody fragment-drug conjugates are capable of enhancing therapeutic efficacy of ADCs by improving their pharmacokinetic characteristics and reducing side effects.


Assuntos
Antineoplásicos , Imunoconjugados , Neuroblastoma , Animais , Camundongos , Fragmentos de Imunoglobulinas , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Imunoconjugados/uso terapêutico , Neuroblastoma/patologia , Modelos Animais de Doenças , Gangliosídeos/metabolismo
8.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069412

RESUMO

Boron neutron capture therapy (BNCT) is one of the most appealing radiotherapy modalities, whose localization can be further improved by the employment of boron-containing nanoformulations, but the fabrication of biologically friendly, water-dispersible nanoparticles (NPs) with high boron content and favorable physicochemical characteristics still presents a great challenge. Here, we explore the use of elemental boron (B) NPs (BNPs) fabricated using the methods of pulsed laser ablation in liquids as sensitizers of BNCT. Depending on the conditions of laser-ablative synthesis, the used NPs were amorphous (a-BNPs) or partially crystallized (pc-BNPs) with a mean size of 20 nm or 50 nm, respectively. Both types of BNPs were functionalized with polyethylene glycol polymer to improve colloidal stability and biocompatibility. The NPs did not initiate any toxicity effects up to concentrations of 500 µg/mL, based on the results of MTT and clonogenic assay tests. The cells with BNPs incubated at a 10B concentration of 40 µg/mL were then irradiated with a thermal neutron beam for 30 min. We found that the presence of BNPs led to a radical enhancement in cancer cell death, namely a drop in colony forming capacity of SW-620 cells down to 12.6% and 1.6% for a-BNPs and pc-BNPs, respectively, while the relevant colony-forming capacity for U87 cells dropped down to 17%. The effect of cell irradiation by neutron beam uniquely was negligible under these conditions. Finally, to estimate the dose and regimes of irradiation for future BNCT in vivo tests, we studied the biodistribution of boron under intratumoral administration of BNPs in immunodeficient SCID mice and recorded excellent retention of boron in tumors. The obtained data unambiguously evidenced the effect of a neutron therapy enhancement, which can be attributed to efficient BNP-mediated generation of α-particles.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Camundongos , Animais , Boro/química , Terapia por Captura de Nêutron de Boro/métodos , Distribuição Tecidual , Camundongos SCID , Lasers
9.
Biochem Biophys Res Commun ; 612: 141-146, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35525198

RESUMO

The targeted delivery of nanodrugs to malignant neoplasm is one of the most pressing challenges in the development of modern medicine. It was reported earlier that a bacteriorhodopsin-derived pH low insertion peptide (pHLIP) targets acidic tumors and has the ability to translocate low molecular weight cargoes across the cancer cell membrane. Here, to better understand the potential of pHLIP-related technologies, we used genetically engineered fluorescent protein (EGFP) as a model protein cargo and examined targeting efficiencies of EGFP-pHLIP hybrid constructs in vitro with the HeLa cell line at different pHs. By two independent monitoring methods we observed an increased binding affinity of EGFP-pHLIP fusions to HeLa cells at pH below 6.8. Confocal images of EGFP-pHLIP-treated cells showed bright fluorescence associated with the cell membrane and fluorescent dots localized inside the cell, that became brighter with time. To elucidate the pHLIP-mediated EGFP cell entry mechanisms, we performed a series of experiments with specific inhibitors of endocytosis. Our results imply that EGFP-pHLIP internalization is realized by endocytosis of various types.


Assuntos
Bacteriorodopsinas , Neoplasias , Membrana Celular/metabolismo , Fluorescência , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/metabolismo , Peptídeos/química
10.
J Nanobiotechnology ; 20(1): 535, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528614

RESUMO

Magnetic nanoparticles are widely used in biomedicine for MRI imaging and anemia treatment. The aging of these nanomaterials in vivo may lead to gradual diminishing of their contrast properties and inducing toxicity. Here, we describe observation of the full lifecycle of 40-nm magnetic particles from their injection to the complete degradation in vivo and associated impact on the organism. We found that in 2 h the nanoparticles were eliminated from the bloodstream, but their initial biodistribution changed over time. In 1 week, a major part of the nanoparticles was transferred to the liver and spleen, where they degraded with a half-life of 21 days. MRI and a magnetic spectral approach revealed preservation of contrast in these organs for more than 1 month. The particle degradation led to the increased number of red blood cells and blood hemoglobin level due to released iron without causing any toxicity in tissues. We also observed an increase in gene expression level of Fe-associated proteins such as transferrin, DMT1, and ferroportin in the liver in response to the iron particle degradation. A deeper understanding of the organism response to the particle degradation can bring new directions to the field of MRI contrast agent design.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/toxicidade , Distribuição Tecidual , Magnetismo , Ferro , Imageamento por Ressonância Magnética/métodos , Biotransformação , Meios de Contraste
11.
Proc Natl Acad Sci U S A ; 115(39): 9690-9695, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30194234

RESUMO

We report combined therapy using upconversion nanoparticles (UCNP) coupled to two therapeutic agents: beta-emitting radionuclide yttrium-90 (90Y) fractionally substituting yttrium in UCNP, and a fragment of the exotoxin A derived from Pseudomonas aeruginosa genetically fused with a targeting designed ankyrin repeat protein (DARPin) specific to HER2 receptors. The resultant hybrid complex UCNP-R-T was tested using human breast adenocarcinoma cells SK-BR-3 overexpressing HER2 receptors and immunodeficient mice, bearing HER2-positive xenograft tumors. The photophysical properties of UCNPs enabled background-free imaging of the UCNP-R-T distribution in cells and animals. Specific binding and uptake of UCNP complexes in SK-BR-3 cells was observed, with separate 90Y- and PE40-induced cytotoxic effects characterized by IC50 140 µg/mL (UCNP-R) and 5.2 µg/mL (UCNP-T), respectively. When both therapeutic agents were combined into UCNP-R-T, the synergetic effect increased markedly, ∼2200-fold, resulting in IC50 = 0.0024 µg/mL. The combined therapy with UCNP-R-T was demonstrated in vivo.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Endotoxinas/uso terapêutico , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Neoplasias/terapia , Radioterapia/métodos , Adenocarcinoma/terapia , Repetição de Anquirina , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias/diagnóstico por imagem , Pseudomonas aeruginosa , Cintilografia/métodos , Receptor ErbB-2/metabolismo , Proteínas Recombinantes , Radioisótopos de Ítrio/uso terapêutico
12.
Molecules ; 25(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961731

RESUMO

Theranostic approach is currently among the fastest growing trends in cancer treatment. It implies the creation of multifunctional agents for simultaneous precise diagnosis and targeted impact on tumor cells. A new type of theranostic complexes was created based on NaYF4: Yb,Tm upconversion nanoparticles coated with polyethylene glycol and functionalized with the HER2-specific recombinant targeted toxin DARPin-LoPE. The obtained agents bind to HER2-overexpressing human breast adenocarcinoma cells and demonstrate selective cytotoxicity against this type of cancer cells. Using fluorescent human breast adenocarcinoma xenograft models, the possibility of intravital visualization of the UCNP-based complexes biodistribution and accumulation in tumor was demonstrated.


Assuntos
Nanopartículas Metálicas/química , Nanomedicina Teranóstica , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Corantes Fluorescentes/química , Fluoretos/química , Humanos , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Nus , Polietilenoglicóis/química , Receptor ErbB-2/metabolismo , Túlio/química , Transplante Heterólogo , Itérbio/química , Ítrio/química
13.
Int J Mol Sci ; 20(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096563

RESUMO

High immunogenicity and systemic toxicity are the main obstacles limiting the clinical use of the therapeutic agents based on Pseudomonas aeruginosa exotoxin A. In this work, we studied the immunogenicity, general toxicity and antitumor effect of the targeted toxin DARPin-LoPE composed of HER2-specific DARPin and a low immunogenic exotoxin A fragment lacking immunodominant human B lymphocyte epitopes. The targeted toxin has been shown to effectively inhibit the growth of HER2-positive human ovarian carcinoma xenografts, while exhibiting low non-specific toxicity and side effects, such as vascular leak syndrome and liver tissue degradation, as well as low immunogenicity, as was shown by specific antibody titer. This represents prospects for its use as an agent for targeted therapy of HER2-positive tumors.


Assuntos
Epitopos de Linfócito B/imunologia , Xenoenxertos , Imunotoxinas/imunologia , Imunotoxinas/farmacologia , Proteínas Musculares/imunologia , Proteínas Nucleares/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Receptor ErbB-2/imunologia , ADP Ribose Transferases/imunologia , ADP Ribose Transferases/farmacologia , Sequência de Aminoácidos , Animais , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/farmacologia , Biomarcadores Tumorais , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Epitopos de Linfócito B/genética , Exotoxinas/imunologia , Exotoxinas/farmacologia , Feminino , Humanos , Concentração Inibidora 50 , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Proteínas Musculares/genética , Proteínas Nucleares/genética , Neoplasias Ovarianas/patologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Baço/patologia , Fatores de Virulência/imunologia , Fatores de Virulência/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Exotoxina A de Pseudomonas aeruginosa
14.
Cytometry A ; 91(9): 917-925, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28857464

RESUMO

Controlling background fluorescence remains an important challenge in flow cytometry, as autofluorescence can interfere with the detection of chromophores. Furthermore, experimental procedures can also affect cellular fluorescence in certain regions of the emission spectrum. In this work, the effects of fixation, permeabilization, and heating on cellular autofluorescence are analyzed in various spectral regions, along with the influence of trypan blue as a quenching dye for these treatments. The impact of these procedures on the staining of SK-BR-3 cells with a dim green fluorophore, a miniSOG (mini Singlet Oxygen Generator) flavoprotein in the form of the recombinant protein DARPin-miniSOG, is also evaluated. The data presented here indicate that fixation of certain types of cells leads to noticeable increase of the autofluorescence. Our results also suggest that trypan blue should be used as an autofluorescence quencher only with bright green emitters since it interferes with the fluorescent signal in a longer-wavelength region of the spectrum and as a result causes reduction of the signal from dim green fluorescent agents. © 2017 International Society for Advancement of Cytometry.


Assuntos
Corantes Fluorescentes/farmacologia , Azul Tripano/farmacologia , Animais , Contagem de Células/métodos , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Fluorescência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Coloração e Rotulagem/métodos
15.
Mol Pain ; 10: 12, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24521084

RESUMO

BACKGROUND: Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord. RESULTS: SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR) cell bodies and processes in lamina II in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin. The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity (LI) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38 MAPK in the DRGs CONCLUSIONS: The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain.


Assuntos
Gânglios Espinais/patologia , Receptores de Somatostatina/metabolismo , Ciática/metabolismo , Ciática/patologia , Células Receptoras Sensoriais/metabolismo , Somatostatina/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Lateralidade Funcional/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/deficiência , Proteínas de Fluorescência Verde/genética , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Octreotida/uso terapêutico , Oligopeptídeos/farmacologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Receptores de Somatostatina/antagonistas & inibidores , Receptores de Somatostatina/deficiência , Receptores de Somatostatina/genética , Ciática/complicações , Ciática/tratamento farmacológico , Células Receptoras Sensoriais/efeitos dos fármacos , Somatostatina/genética
16.
Nat Commun ; 15(1): 4366, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777821

RESUMO

Rapid uptake of nanoparticles by mononuclear phagocyte system (MPS) significantly hampers their therapeutic efficacy. Temporal MPS blockade is one of the few ways to overcome this barrier - the approach rediscovered many times under different names but never extensively used in clinic. Using meta-analysis of the published data we prove the efficacy of this technique for enhancing particle circulation in blood and their delivery to tumours, describe a century of its evolution and potential combined mechanism behind it. Finally, we discuss future directions of the research focusing on the features essential for successful clinical translation of the method.


Assuntos
Sistemas de Liberação de Medicamentos , Sistema Fagocitário Mononuclear , Nanopartículas , Humanos , Sistema Fagocitário Mononuclear/metabolismo , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Animais , Sistemas de Liberação de Fármacos por Nanopartículas/química
17.
Cells ; 13(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391930

RESUMO

(1) Background: We have previously shown that the use of an artificial supramolecular two-component system based on chimeric recombinant proteins 4D5scFv-barnase and barstar-heat shock protein 70 KDa (HSP70) allows targeted delivery of HSP70 to the surface of tumor cells bearing HER2/neu antigen. In this work, we studied the possibility to using DARPin9_29-barnase as the first targeting module recognizing HER2/neu-antigen in the HSP70 delivery system. (2) Methods: The effect of the developed systems for HSP70 delivery to human carcinomas SK-BR-3 and BT474 cells hyperexpressing HER2/neu on the activation of cytotoxic effectors of the immune cells was studied in vitro. (3) Results: The results obtained by confocal microscopy and cytofluorimetric analysis confirmed the binding of HSP70 or its fragment HSP70-16 on the surface of the treated cells. In response to the delivery of HSP70 to tumor cells, we observed an increase in the cytolytic activity of different cytotoxic effector immune cells from human peripheral blood. (4) Conclusions: Targeted modification of the tumor cell surface with molecular structures recognized by cytotoxic effectors of the immune system is among new promising approaches to antitumor immunotherapy.


Assuntos
Antineoplásicos , Proteínas de Bactérias , Carcinoma , Ribonucleases , Humanos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Choque Térmico HSP70
18.
Adv Sci (Weinh) ; 11(20): e2307060, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516744

RESUMO

Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond-laser ablation in liquids rapidly dissolve in physiological-like environment through the oxidation mechanism. The biodegradation of Ge nanoparticles is preserved in tumor cells in vitro and in normal tissues in mice with a half-life as short as 3.5 days. Biocompatibility of Ge NPs is confirmed in vivo by hematological, biochemical, and histological analyses. Strong optical absorption of Ge in the near-infrared spectral range enables photothermal treatment of engrafted tumors in vivo, following intravenous injection of Ge NPs. The photothermal therapy results in a 3.9-fold reduction of the EMT6/P adenocarcinoma tumor growth with significant prolongation of the mice survival. Excellent mass-extinction of Ge NPs (7.9 L g-1 cm-1 at 808 nm) enables photoacoustic imaging of bones and tumors, following intravenous and intratumoral administrations of the nanomaterial. As such, strongly absorbing near-infrared-light biodegradable Ge nanomaterial holds promise for advanced theranostics.


Assuntos
Germânio , Técnicas Fotoacústicas , Fototerapia , Animais , Camundongos , Técnicas Fotoacústicas/métodos , Germânio/química , Fototerapia/métodos , Modelos Animais de Doenças , Lasers , Nanopartículas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Feminino
19.
Proteomics ; 13(9): 1437-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23456920

RESUMO

High-affinity molecular pairs provide a convenient and flexible modular base for the design of molecular probes and protein/antigen assays. Specificity and sensitivity performance indicators of a bioassay critically depend on the dissociation constant (K(D)) of the molecular pair, with avidin:biotin being the state-of-the-art molecular pair (K(D) ∼ 1 fM) used almost universally for applications in the fields of nanotechnology and proteomics. In this paper, we present an alternative high-affinity protein pair, barstar:barnase (K(D) ∼ 10 fM), which addresses several shortfalls of the avidin:biotin system, including non-negligible background due to the non-specific binding. A quantitative assessment of the non-specific binding carried out using a model assay revealed inherent irreproducibility of the [strept]avidin:biotin-based assays, attributed to the avidin binding to solid phases, endogenous biotin molecules and serum proteins. On the other hand, the model assays assembled via a barstar:barnase protein linker proved to be immune to such non-specific binding, showing good prospects for high-sensitivity rare biomolecular event nanoproteomic assays.


Assuntos
Proteínas de Bactérias/metabolismo , Bioensaio/métodos , Proteômica/métodos , Ribonucleases/metabolismo , Anticorpos/genética , Avidina/metabolismo , Biotina/metabolismo , Escherichia coli/genética , Microscopia de Fluorescência , Análise Serial de Proteínas/métodos , Receptor ErbB-2/imunologia , Estreptavidina/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(13): 5827-32, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20231484

RESUMO

A bioengineering method for self-assembly of multifunctional superstructures with in-advance programmable properties has been proposed. The method employs two unique proteins, barnase and barstar, to rapidly join the structural components together directly in water solutions. The properties of the superstructures can be designed on demand by linking different agents of various sizes and chemical nature, designated for specific goals. As a proof of concept, colloidally stable trifunctional structures have been assembled by binding together magnetic particles, quantum dots, and antibodies using barnase and barstar. The assembly has demonstrated that the bonds between these proteins are strong enough to hold macroscopic (5 nm-3 microm) particles together. Specific interaction of such superstructures with cancer cells resulted in fluorescent labeling of the cells and their responsiveness to magnetic field. The method can be used to join inorganic moieties, organic particles, and single biomolecules for synergistic use in different applications such as biosensors, photonics, and nanomedicine.


Assuntos
Proteínas de Bactérias , Nanopartículas/química , Ribonucleases , Anticorpos Antineoplásicos/administração & dosagem , Proteínas de Bactérias/genética , Sequência de Bases , Engenharia Biomédica , Fenômenos Biofísicos , Linhagem Celular Tumoral , Primers do DNA , Sistemas de Liberação de Medicamentos , Feminino , Óxido Ferroso-Férrico , Corantes Fluorescentes , Humanos , Nanopartículas Metálicas , Modelos Moleculares , Pontos Quânticos , Proteínas Recombinantes/genética , Ribonucleases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA