Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 34(6): e4825, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166756

RESUMO

Treatment through a combination of drugs involving cyclin D-dependent kinase inhibitors like abemaciclib and aromatase inhibitor like letrozole proved to be a potential therapeutic regimen and first-line treatment in estrogen receptor-positive breast cancer. In this study, we developed a simple and simultaneous RP-HPLC bioanalytical method for quantifying abemaciclib and letrozole in rat plasma. Abemaciclib and letrozole were separated on Zorbax Eclipse C18 column employing a gradient elution method comprising 10 mM ammonium acetate (pH 5) and acetonitrile as mobile phase. The method was found to have acceptable selectivity, accuracy (97.20-118.17%), precision (1.10-9.39%) and stability in the validation experiment performed as per the US Food and Drug Administration guidelines. The method sensitivity was low at a concentration level of 100 ng/ml. The applicability of the method has been verified through a single-dose oral pharmacokinetic study in rat. The developed method will be useful to quantitate the analytes in rat plasma samples of different preclinical studies including their pharmacokinetic drug-drug interactions in the future. To date, no method has been reported for the quantification of abemaciclib and letrozole simultaneously in any type of biological matrices. Therefore, this study makes a definite significant contribution in the field of bioanalytical research.


Assuntos
Aminopiridinas/sangue , Aminopiridinas/farmacocinética , Benzimidazóis/sangue , Benzimidazóis/farmacocinética , Letrozol/sangue , Letrozol/farmacocinética , Aminopiridinas/química , Animais , Benzimidazóis/química , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Letrozol/química , Limite de Detecção , Modelos Lineares , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
2.
J Pharm Biomed Anal ; 242: 116024, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387126

RESUMO

Importance of cleaning validation in the pharmaceutical industry cannot be overstated. It is essential for preventing cross-contamination, ensuring product quality & safety, and upholding regulatory standards. The present study involved development of an effective cleaning method for five selected kinase inhibitors binimetinib (BMT), selumetinib (SMT), brigatinib (BGT), capmatinib (CPT), and baricitinib (BRT). For checking the effectiveness of the developed cleaning technique, a sensitive and specific RP-HPLC based analytical method employing a diode array detector has been established to quantitate drug residue on glass and stainless steel surfaces. A reproducible swab sampling protocol utilizing TX714A Alpha swabs wetted with an extracting solvent has been developed to collect representative samples from both surfaces. Chromatographic separation of selected kinase inhibitors was achieved in gradient mode using an Agilent Zorbax eclipsed C18 column with acetonitrile and 10 mM ammonium formate as the mobile phase. The analytes were chromatographically separated in a 12 min run time. The mean swab recovery for each drug from glass and stainless steel surfaces exceeded 90%. Cleaning with IPA (70%) and acetone (70%) effectively removed residues for all five drugs. A solution comprising 10 mM SDS with 20% IPA demonstrated good efficacy in cleaning residues of BGT, BRT, and CPT, but exhibited lower efficacy for SMT and BMT.


Assuntos
Indústria Farmacêutica , Aço Inoxidável , Cromatografia Líquida de Alta Pressão/métodos , Solventes , Acetona
3.
Int J Pharm ; 643: 123267, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488057

RESUMO

Nowadays, conducting discriminative dissolution experiments employing physiologically based pharmacokinetic modeling (PBPK) or physiologically based biopharmaceutical modeling (PBBM) is gaining significant importance in quantitatively predicting oral absorption of drugs. Mechanistic understanding of each process involved in drug absorption and its impact on the performance greatly facilitates designing a formulation with high confidence. Unfortunately, the biggest challenge scientists are facing in current days is the lack of standardized protocol for integrating dissolution experiment data during PBPK modeling. However, in vitro-in vivo drug release interrelation can be improved with the consideration and development of appropriate biorelevant dissolution media that closely mimic physiological conditions. Multiple reported dissolution models have described nature and functionality of different regions of the gastrointestinal tract (GI) to more accurately design discriminative dissolution media. Dissolution experiment data can be integrated either mechanistically or without a mechanism depending primarily on the formulation type, biopharmaceutics classification system (BCS) class and particle size of the drug substance. All such parameters are required to be considered for selecting the appropriate functions during PBPK modeling to produce a best fit model. The primary focus of this review is to critically discuss various progressive dissolution models and tools, existing challenges and approaches for establishing best fit PBPK model aiming better in vitro-in vivo correlation (IVIVC). Strategies for proper selection of dissolution models as an input function in PBPK/PBBM modeling have also been critically discussed. Logical and scientific pathway for selection of different type of functions and integration events in the commercially available in silico software has been described through case studies.


Assuntos
Produtos Biológicos , Biofarmácia , Solubilidade , Administração Oral , Liberação Controlada de Fármacos , Biofarmácia/métodos , Trato Gastrointestinal/metabolismo , Produtos Biológicos/metabolismo , Modelos Biológicos , Simulação por Computador
4.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188906, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172652

RESUMO

Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Disponibilidade Biológica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/genética
5.
Anal Sci ; 35(10): 1069-1082, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31105088

RESUMO

Sample preparation is a highly important and integral part of bioanalysis for cleaning up the complex biological matrices and thereby minimizing matrix effect. Matrix effect can jeopardize the precise quantification and adversely affect the reliability of liquid chromatography-mass spectrometry-based analytical results by alteration of analyte ionization. Matrix components result in suppression or enhancement of the intensity of analyte response. In spite of the high specificity and selectivity of tandem mass spectrometry, a relatively higher concentration of coeluted matrix elements present in biofluids may alter the efficiency of quantification of a bioanalytical method. Numerous literature reports different types of sample preparation techniques employed in bioanalysis. In this review, the strategies for selection of the appropriate sample clean-up technique in bioanalysis are discussed extensively. A paradigm shift in the arena of sample preparation and bioanalytical approaches involving the liquid chromatography-mass spectroscopic technique has been scrutinized. Current trends and possible future advancements in the field of biological sample extraction methods, including instrumental techniques are analyzed in detail.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Animais , Precipitação Química , Testes de Química Clínica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA