Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 18(20): 3928-3940, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35546489

RESUMO

The friction generated between a finger and an object forms the mechanical stimuli behind fine touch perception. To control friction, and therefore tactile perception, current haptic devices typically rely on physical features like bumps or pins, but chemical and microscale morphology of surfaces could be harnessed to recreate a wider variety of tactile sensations. Here, we sought to develop a new way to create tactile sensations by relying on differences in microstructure as quantified by the degree of crystallinity in polymer films. To isolate crystallinity, we used polystyrene films with the same chemical formula and number averaged molecular weights, but which differed in tacticity and annealing conditions. These films were also sufficiently thin as to be rigid which minimized effects from bulk stiffness and had variations in roughness lower than detectable by humans. To connect crystallinity to human perception, we performed mechanical testing with a mock finger to form predictions about the degree of crystallinity necessary to result in successful discrimination by human subjects. Psychophysical testing verified that humans could discriminate surfaces which differed only in the degree of crystallinity. Although related, human performance was not strongly correlated with a straightforward difference in the degree of crystallinity. Rather, human performance was better explained by quantifying transitions in steady to unsteady sliding and the generation of slow frictional waves (r2 = 79.6%). Tuning fine touch with polymer crystallinity may lead to better engineering of existing haptic interfaces or lead to new classes of actuators based on changes in microstructure.


Assuntos
Percepção do Tato , Tato , Dedos , Fricção , Humanos , Polímeros
2.
Soft Matter ; 17(19): 5050-5060, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33929468

RESUMO

The mechanical stimuli generated as a finger interrogates the physical and chemical features of an object form the basis of fine touch. Haptic devices, which are used to control touch, primarily focus on recreating physical features, but the chemical aspects of fine touch may be harnessed to create richer tactile interfaces and reveal fundamental aspects of tactile perception. To connect tactile perception with molecular structure, we systematically varied silane-derived monolayers deposited onto surfaces smoother than the limits of human perception. Through mechanical friction testing and cross-correlation analysis, we made predictions of which pairs of silanes might be distinguishable by humans. We predicted, and demonstrated, that humans can distinguish between two isosteric silanes which differ only by a single nitrogen-for-carbon substitution. The mechanism of tactile contrast originates from a difference in monolayer ordering, as quantified by the Hurst exponent, which was replicated in two alkylsilanes with a three-carbon difference in length. This approach may be generalizable to other materials and lead to new tactile sensations derived from materials chemistry.


Assuntos
Percepção do Tato , Tato , Dedos , Fricção , Humanos
3.
Adv Funct Mater ; 30(29)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34276273

RESUMO

The goal of the field of haptics is to create technologies that manipulate the sense of touch. In virtual and augmented reality, haptic devices are for touch what loudspeakers and RGB displays are for hearing and vision. Haptic systems that utilize micromotors or other miniaturized mechanical devices (e.g., for vibration and pneumatic actuation) produce interesting effects, but are quite far from reproducing the feeling of real materials. They are especially deficient in recapitulating surface properties: fine texture, friction, viscoelasticity, tack, and softness. The central argument of this Progress Report is that to reproduce the feel of everyday objects requires chemistry: molecular control over the properties of materials and ultimately design of materials which can change these properties in real time. Stimuli-responsive organic materials, such as polymers and composites, are a class of materials which can change their oxidation state, conductivity, shape, and rheological properties, and thus might be useful in future haptic technologies. Moreover, the use of such materials in research on tactile perception could help elucidate the limits of human tactile sensitivity. The work described represents the beginnings of this new area of inquiry, in which the defining approach is the marriage of materials science and psychology.

4.
Nano Lett ; 18(8): 5306-5311, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30024767

RESUMO

Despite the apparent convenience of microfluidic technologies for applications in healthcare, such devices often rely on capital-intensive optics and other peripheral equipment that limit throughput. Here, we monitored the transit of fluids, gases, particles, and cells as they flowed through a microfluidic channel without the use of a camera or laser, i.e., "optics-free" microfluidics. We did this by monitoring the deformation of the side walls caused by the analyte passing through the channel. Critically, the analyte did not have to make contact with the channel walls to induce a deflection. This minute deformation was transduced into a change in electrical resistance using an ultrasensitive piezoresitive film composed of metallic nano-islands on graphene. We related changes in the resistance of the sensor to the theoretical deformation of the channel at varying flow rates. Then, we used air bubbles to induce a perturbation on the elastomeric channel walls and measured the viscoelastic relaxation of the walls of the channel. We obtained a viscoelastic time constant of 11.3 ± 3.5 s-1 for polydimethylsiloxane, which is consistent with values obtained using other techniques. Finally, we flowed silica particles and human mesenchymal stem cells and measured the deformation profiles of the channel. This technique yielded a convenient, continuous, and non-contact measurement of rigid and deformable particles without the use of a laser or camera.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Nanocompostos/química , Dimetilpolisiloxanos/química , Desenho de Equipamento/instrumentação , Cinética , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
5.
Soft Matter ; 14(36): 7483-7491, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30152497

RESUMO

The perception of fine texture of an object is influenced by its microscopic topography and surface chemistry-i.e., the topmost layer of atoms and molecules responsible for its surface energy, adhesion, and friction generated when probed by a fingertip. Recently, it has been shown that human subjects can discriminate high-energy (i.e., hydrophilic), oxidized silicon from low-energy (i.e., hydrophobic), fluorinated alkylsilane-coated silicon. The basis of discrimination was consistent with differences between stick-slip friction frequencies generated when sliding the fingertip across the two surfaces. One aspect that was not examined was the presence of surface relief structures on the fingertip. Indeed, papillary ridges-fingerprints-may be involved in enhanced discrimination of fine textures arising from surface roughness, but how (or whether) fingerprints may also be involved in the discrimination of surface chemistry-through its effect on friction-is unknown. Here, using a mock finger made from a slab of silicone rubber shows that relief structures amplify differences in stick-slip friction when slid across either a hydrophilic oxide or a hydrophobic monolayer on silicon. We quantify the similarity between the friction traces of the mock fingers sliding across hydrophilic and hydrophobic surfaces under varying velocities and applied masses using a cross-correlation analysis. We then convert the cross-correlational data into convenient "discriminability matrices." These matrices identify combinations of downward forces and sliding velocities that enhance differences in friction between hydrophilic and hydrophobic monolayers. In addition, a computational model of macroscopic, "rate-and-state" friction confirms that frictional differences in chemistry are amplified when elastic slabs bear a patterned interface. This biomimetic approach to engineering sliding interfaces may inform the development of improved electronic skin and haptic devices and may contribute to understanding the role of relief structure in tactile perception.


Assuntos
Dermatoglifia , Elastômeros/química , Fricção , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
6.
Langmuir ; 33(1): 164-175, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27959562

RESUMO

Microstructured surfaces, such as those inspired by nature, mediate surface interactions and are actively sought after to control wetting, adhesion, and friction. In particular, the rolling motion of spheres on microstructured surfaces in fluid environments is important for the transport of particles in microfluidic devices or in tribology. Here, we characterize the motion of smooth silicon nitride spheres (diameters 3-5 mm) as they roll down inclined planes decorated with hexagonal arrays of microwells and micropillars. For both types of patterned surfaces, we vary the area fraction of the micropatterned features from 0.04 to 0.96. We measure directly and independently the rotational and translational velocities of the spheres as they roll down planes with inclination angles that vary between 5 and 30°. For a given area fraction, we find that spheres have a higher translational and rotational velocity on surfaces with microwells than on micropillars. We rely on the model of Smart and Leighton [Phys. Fluids A 5, 13 (1993)] to obtain an effective gap width and coefficient of friction for all microstructured surfaces investigated. We find that the coefficient of friction is significantly higher for a surface with micropillars than that for one with microwells, likely due to the presence of interconnected drainage channels that provide additional paths for the fluid flow and favor solid-solid contact on the surface with micropillars. We find that while the effective gap width at a very low solid fraction is equal to the height of the patterned features, the effective separation decreases exponentially as the surface coverage of microstructures increases, with little measured differences between the two geometries. Superposition of resistance functions is used to relate the rapid decrease in the effective gap height with increase in the surface coverage observed in experiments.


Assuntos
Materiais Biomiméticos/química , Compostos de Silício/química , Propriedades de Superfície
7.
Phys Rev Lett ; 115(24): 248302, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26705661

RESUMO

We characterize the spatiotemporal deformation of an elastic film during the radial drainage of fluid from a narrowing gap. Elastic deformation of the film takes the form of a dimple and prevents full contact to be reached. With a thinner elastic film the stress becomes increasingly supported by the underlying rigid substrate and the dimple formation is suppressed, which allows the surfaces to reach full contact. We highlight the lag due to viscoelasticity on the surface profiles, and that for a given fluid film thickness deformation leads to stronger hydrodynamic forces than for rigid surfaces.

8.
Soft Matter ; 11(10): 1901-10, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25611799

RESUMO

Tree frogs are able to take advantage of an array of epithelial cells in their toe pads to modulate their adhesion to surfaces under dry, wet, and flooded environments. It has been hypothesized that the interconnected channels separating the epithelial cells could reduce the hydrodynamic repulsion to facilitate contact under a completely submerged environment (flooded conditions). Using a custom-built apparatus we investigate the interplay between surface structure and loading conditions on the peeling force. By combining a normal approach and detachment by peeling we can isolate the effects of surface structure from the loading conditions. We investigate three surfaces: two rigid structured surfaces that consist of arrays of cylindrical posts and a flat surface as a control. We observe three regimes in the work required to separate the structured surface that depend on the fluid film thickness prior to pull out. These three regimes are based on hydrodynamics and our experimental results are compared with a simple scaling argument that relates the surface features to the different regimes observed. Overall we find that the work of separation of a structured surface is always less than or equal to that for a smooth surface when considering purely viscous contributions.


Assuntos
Hidrodinâmica , Óleos de Silicone/química , Estresse Mecânico , Propriedades de Superfície , Viscosidade
9.
ACS Polym Au ; 4(1): 34-44, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38371732

RESUMO

Electrically conductive hydrogels represent an innovative platform for the development of bioelectronic devices. While photolithography technologies have enabled the fabrication of complex architectures with high resolution, photoprinting conductive hydrogels is still a challenging task because the conductive polymer absorbs light which can outcompete photopolymerization of the insulating scaffold. In this study, we introduce an approach to synthesizing conductive hydrogels in one step. Our approach combines the simultaneous photo-cross-linking of a polymeric scaffold and the polymerization of 3,4-ethylene dioxythiophene (EDOT), without additional photocatalysts. This process involves the copolymerization of photo-cross-linkable coumarin-containing monomers with sodium styrenesulfonate to produce a water-soluble poly(styrenesulfonate-co-coumarin acrylate) (P(SS-co-CoumAc)) copolymer. Our findings reveal that optimizing the [SS]:[CoumAc] ratio at 100:5 results in hydrogels with the strain at break up to 16%. This mechanical resilience is coupled with an electronic conductivity of 9.2 S m-1 suitable for wearable electronics. Furthermore, the conductive hydrogels can be photopatterned to achieve micrometer-sized structures with high resolution. The photo-cross-linked hydrogels are used as electrodes to record stable and reliable surface electromyography (sEMG) signals. These novel photo-cross-linkable polymers combined with one-pot PEDOT (poly-EDOT) polymerization open possibilities for rapidly prototyping complex bioelectronic devices and creating custom-designed interfaces between electronics and biological systems.

10.
Lab Chip ; 23(18): 4067-4078, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37610268

RESUMO

Recent advances recognize that the viscoelastic properties of epithelial structures play important roles in biology and disease modeling. However, accessing the viscoelastic properties of multicellular structures in mechanistic or drug-screening applications has challenges in repeatability, accuracy, and practical implementation. Here, we present a microfluidic platform that leverages elastohydrodynamic phenomena, sensed by strain sensors made from graphene decorated with palladium nanoislands, to measure the viscoelasticity of cellular monolayers in situ, without using chemical labels or specialized equipment. We demonstrate platform utility with two systems: cell dissociation following trypsinization, where viscoelastic properties change over minutes, and epithelial-to-mesenchymal transition, where changes occur over days. These cellular events could only be resolved with our platform's higher resolution: viscoelastic relaxation time constants of λ = 14.5 ± 0.4 s-1 for intact epithelial monolayers, compared to λ = 13.4 ± 15.0 s-1 in other platforms, which represents a 30-fold improvement. By rapidly assessing combined contributions from cell stiffness and intercellular interactions, we anticipate that the platform will hasten the translation of new mechanical biomarkers.


Assuntos
Grafite , Transição Epitelial-Mesenquimal , Avaliação Pré-Clínica de Medicamentos , Microfluídica
11.
ACS Biomater Sci Eng ; 9(2): 1011-1019, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36701648

RESUMO

Articular cartilage derives its load-bearing strength from the mechanical and physiochemical coupling between the collagen network and negatively charged proteoglycans, respectively. Current disease modeling approaches and treatment strategies primarily focus on cartilage stiffness, partly because indentation tests are readily accessible. However, stiffness measurements via indentation alone cannot discriminate between proteoglycan degradation versus collagen degradation, and there is a lack of methods to monitor physiochemical contributors in full-stack tissue. To decouple these contributions, here, we developed a platform that measures tissue swelling in full-depth equine cartilage explants using piezoresistive graphene strain sensors. These piezoresistive strain sensors are embedded within an elastomer bulk and have sufficient sensitivity to resolve minute, real-time changes in swelling. By relying on simple DC resistance measurements over optical techniques, our platform can analyze multiple samples in parallel. Using these devices, we found that cartilage explants under enzymatic digestion showed distinctive swelling responses to a hypotonic challenge and established average equilibrium swelling strains in healthy cartilage (4.6%), cartilage with proteoglycan loss (0.5%), and in cartilage with both collagen and proteoglycan loss (-2.6%). Combined with histology, we decoupled the pathologic swelling responses as originating either from reduced fixed charge density or from loss of intrinsic stiffness of the collagen matrix in the superficial zone. By providing scalable and in situ monitoring of cartilage swelling, our platform could facilitate regenerative medicine approaches aimed at restoring osmotic function in osteoarthritic cartilage or could be used to validate physiologically relevant swelling behavior in synthetic hydrogels.


Assuntos
Cartilagem Articular , Grafite , Animais , Cavalos , Cartilagem Articular/metabolismo , Modelos Biológicos , Colágeno/metabolismo , Proteoglicanas/metabolismo
12.
ACS Appl Mater Interfaces ; 15(47): 54711-54720, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962428

RESUMO

Organic mixed ionic-electronic conductors, such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), are essential materials for the fabrication of bioelectronic devices due to their unique ability to couple and transport ionic and electronic charges. The growing interest in bioelectronic devices has led to the development of organic electrochemical transistors (OECTs) that can operate in aqueous solutions and transduce ionic signals of biological origin into measurable electronic signals. A common challenge with OECTs is maintaining the stability and performance of the PEDOT:PSS films operating under aqueous conditions. Although the conventional approach of blending the PEDOT:PSS dispersions with a cross-linker such as (3-glycidyloxypropyl)trimethoxysilane (GOPS) helps to ensure strong adhesion of the films to device substrates, it also impacts the morphology and thus electrical properties of the PEDOT:PSS films, which leads to a significant reduction in the performance of OECTs. In this study, we instead functionalize only the surface of the device substrates with GOPS to introduce a silane monolayer before spin-coating the PEDOT:PSS dispersion on the substrate. In all cases, having a GOPS monolayer instead of a blend leads to increased electronic performance metrics, such as three times higher electronic conductivity, volumetric capacitance, and mobility-capacitance product [µC*] value in OECT devices, ultimately leading to a record value of 406 ± 39 F cm-1 V-1 s-1 for amorphous PEDOT:PSS. This increased performance does not come at the expense of operational stability, as both the blend and surface functionalization show similar performance when subjected to pulsed gate bias stress, long-term electrochemical cycling tests, and aging over 150 days. Overall, this study establishes a novel approach to using GOPS as a surface monolayer instead of a blended cross-linker, for achieving high-performance organic mixed ionic-electronic conductors that are stable in water for bioelectronics.

13.
PLoS One ; 16(9): e0255980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473714

RESUMO

Polymeric arrays of microrelief structures have a range of potential applications. For example, to influence wettability, to act as biologically inspired adhesives, to resist biofouling, and to play a role in the "feel" of an object during tactile interaction. Here, we investigate the damage to micropillar arrays comprising pillars of different modulus, spacing, diameter, and aspect ratio due to the sliding of a silicone cast of a human finger. The goal is to determine the effect of these parameters on the types of damage observed, including adhesive failure and ploughing of material from the finger onto the array. Our experiments point to four principal conclusions [1]. Aspect ratio is the dominant parameter in determining survivability through its effect on the bending stiffness of micropillars [2]. All else equal, micropillars with larger diameter are less susceptible to breakage and collapse [3]. The spacing of pillars in the array largely determines which type of adhesive failure occurs in non-surviving arrays [4]. Elastic modulus plays an important role in survivability. Clear evidence of elastic recovery was seen in the more flexible polymer and this recovery led to more instances of pristine survivability where the stiffer polymer tended to ablate PDMS. We developed a simple model to describe the observed bending of micropillars, based on the quasi-static mechanics of beam-columns, that indicated they experience forces ranging from 10-4-10-7 N to deflect into adhesive contact. Taken together, results obtained using our framework should inform design considerations for microstructures intended to be handled by human users.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Tato/fisiologia , Módulo de Elasticidade , Humanos , Propriedades de Superfície , Molhabilidade
14.
Sci Adv ; 5(8): eaaw8845, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31497646

RESUMO

In engineering, the "softness" of an object, as measured by an indenter, manifests as two measurable parameters: (i) indentation depth and (ii) contact area. For humans, softness is not well defined, although it is believed that perception depends on the same two parameters. Decoupling their relative contributions, however, has not been straightforward because most bulk-"off-the-shelf"-materials exhibit the same ratio between the indentation depth and contact area. Here, we decoupled indentation depth and contact area by fabricating elastomeric slabs with precise thicknesses and microstructured surfaces. Human subject experiments using two-alternative forced-choice and magnitude estimation tests showed that the indentation depth and contact area contributed independently to perceived softness. We found an explicit relationship between the perceived softness of an object and its geometric properties. Using this approach, it is possible to design objects for human interaction with a desired level of perceived softness.


Assuntos
Percepção do Tato , Humanos , Modelos Teóricos , Propriedades de Superfície
15.
Chem Mater ; 30(13): 4459-4468, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30930534

RESUMO

Despite the common association of π-conjugated polymers with flexible and stretchable electronics, these materials can be rigid and brittle unless they are designed otherwise. For example, low modulus, high extensibility, and high toughness are treated as prerequisites for integration with soft and biological structures. One of the most successful and commercially available organic electronic materials is the conductive and brittle polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). To make this material stretchable, additives such as ionic liquids must be used. These additives may render the composite incompatible with biological tissue. In this work, we describe the synthesis of an intrinsically stretchable variant of the conductive polymer PEDOT:PSS that is free of additives. The approach involves the synthesis of a block copolymer comprising soft segments of poly(polyethylene glycol methyl ether acrylate) (PPEGMEA) and hard segments of poly(styrene sulfonate) (PSS) using a reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequently, we used the newly synthesized ionic elastomer PSS-b-PPEGMEA as a matrix for the oxidative polymerization of EDOT. The resulting polyelectrolyte elastomer, PEDOT:PSS-b-PPEGMEA, can withstand elongations up to 128% and has a toughness up to 10.1 MJ m-3. While the polyelectrolyte elastomer is not as conductive as the commercial material, the toughness and extensibility are each more than an order of magnitude higher. Moreover, the electrical conductivity of the polyelectrolyte elastomer exhibits minimal decrease with strain within the elastic regime. We then compared the block copolymer to physical blends of PEDOT:PSS and PPEGMEA. The blend material had a much lower failure strain of only 38% and a maximum toughness of 4.9 MJ m-3. This approach thus emphasizes the importance of the covalent linking of the PSS and PPEGMEA blocks. Furthermore, we demonstrate that the conductivity of scratched films can be restored upon exposure to water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA