Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012768

RESUMO

Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE. The double-network LCE (DNLCE) shows considerable improvements in tensile strength (313.9%) and maximum actuation stress (342.8%) compared to pristine LCE. To facilitate the controllability and application, a coiled artificial muscle fiber consisting of DNLCE-coated carbon nanotube (CNT) fiber is prepared. When electrothermally driven, the artificial muscle fiber outputs a high actuation performance and programmable actuation. Furthermore, by knitting the artificial muscle fibers into origami structures, an intelligent gripper and crawling inchworm robot have been demonstrated. These demonstrations provide promising application scenarios for advanced intelligent systems in the future.

2.
Small ; : e2403062, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940238

RESUMO

Aqueous Zn-ion batteries (ZIBs) are considered to be one of the most promising energy storage devices in the post-lithium-ion era with fast ionic conductivity, safety, and low cost. However, excessive accumulation of zinc dendrites will fracture and produce dead zinc, resulting in the unsatisfied utilization rate of Zn anodes, which greatly restricts the lifespan of the battery and reduces the reversibility. In this paper, by constructing a protective layer of ZnSnO3 hollow nanospheres in situ growth on the surface of the Zn anode, more zincophilic sites are established on the electrode surface. It demonstrates that uniform deposition of Zn ions by deepening the binding energy with Zn ion and its unique hollow structure shortens the diffusion distance of Zn ions and enhances the reaction kinetics. The assembled Zn-ion hybrid supercapacitor (ZHSC) of ZnSnO3@Zn//AC achieved a long-term lifespan with 4000 cycles at a current density of 10 mA cm-2 with a Coulombic efficiency of 99.31% and capacity retention of 79.6%. This work offers a new path for advanced Zn anodes interphase supporting the long cycle life with large capacities and improving electrochemical reversibility.

3.
Small ; : e2306722, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088588

RESUMO

To change the binary structure of nanotube and nanotube array in vertically aligned carbon nanotube arrays, this work deposits regularly arranged amorphous alumina sheets on the classical array growth catalyst (10 nm-thick alumina and 2 nm-thick iron) and obtains an array similar to the Medusa head. Subsequent experiments revealed that these alumina sheets show both unstable and stable qualities during growth: unstable in that they thermally deform and change their newly discovered characteristics of blocking carbon source diffusion, which regulates the nanotube growth order in specific areas; stable in that they withstand the deformation caused by heat and sequential growth of nanotubes, serving as a substrate and buffer layer for Medusa's hair, i.e., nanotube bundles on the array surface. Their combination splits this binary structure into a tertiary architecture consisting of nanotubes, nanotube bundles, and the array spanning nano-, micro-, and milli-meter. Benefiting from this structure, this array exhibits a unique near-isotropic adhesion characteristic compared to existing reports and outperforms classical and patterned arrays with the same classical catalyst and growth conditions.

4.
Small ; 19(27): e2300589, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36970836

RESUMO

The advancement in thermosensitive active hydrogels has opened promising opportunities to dynamic full-thickness skin wound healing. However, conventional hydrogels lack breathability to avoid wound infection and cannot adapt to wounds with different shapes due to the isotropic contraction. Herein, a moisture-adaptive fiber that rapidly absorbs wound tissue fluid and produces a large lengthwise contractile force during the drying process is reported. The incorporation of hydroxyl-rich silica nanoparticles in the sodium alginate/gelatin composite fiber greatly improves the hydrophilicity, toughness, and axial contraction performance of the fiber. This fiber exhibits a dynamic contractile behavior as a function of humidity, generating ≈15% maximum contraction strain or ≈24 MPa maximum isometric contractile stress. The textile knitted by the fibers features excellent breathability and generates adaptive contraction in the target direction during the natural desorption of tissue fluid from the wounds. In vivo animal experiments further demonstrate the advantages of the textiles over traditional dressings in accelerating wound healing.


Assuntos
Pele , Cicatrização , Animais , Pele/lesões , Bandagens , Biopolímeros , Hidrogéis
5.
Small ; 19(37): e2301906, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37140102

RESUMO

Aqueous zinc-ion batteries (ZIBs) have attracted extensive attention in recent years because of its high volumetric energy density, the abundance of zinc resources, and safety. However, ZIBs still suffer from poor reversibility and sluggish kinetics derived from the unstable cathodic structure and the strong electrostatic interactions between bivalent Zn2+ and cathodes. Herein, magnesium doping into layered manganese dioxide (Mg-MnO2 ) via a simple hydrothermal method as cathode materials for ZIBs is proposed. The interconnected nanoflakes of Mg-MnO2 possess a larger specific surface area compared to pristine δ-MnO2 , providing more electroactive sites and boosting the capacity of batteries. The ion diffusion coefficients of Mg-MnO2 can be enhanced due to the improved electrical conductivity by doped cations and oxygen vacancies in MnO2 lattices. The assembled Zn//Mg-MnO2 battery delivers a high specific capacity of 370 mAh g-1 at a current density of 0.6 A g-1 . Furthermore, the reaction mechanism confirms that Zn2+ insertion occurred after a few cycles of activation reactions. Most important, the reversible redox reaction between Zn2+ and MnOOH is found after several charge-discharge processes, promoting capacity and stability. It believes that this systematic research enlightens the design of high-performance of ZIBs and facilitates the practical application of Zn//MnO2 batteries.

6.
Nanotechnology ; 33(23)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35235915

RESUMO

Carbon nanotube fibers are highly recommended in the field of temperature sensor application owing to their excellent electrical conductivity and thermal conductivity. Here, this work demonstrated the rapid thermal response behaviour of CNT fibers fabricated by floating catalyst CVD method, which was measured by anin situtechnique based on the CNT film electric heater with excellent electrothermal response properties. The temperature dependences of resistance and structure were both explored. Experimental investigation indicates that the reduction in the inter-CNT interspace in the fibers caused by thermally driven actuation was dominantly responsible for the decrease of the fibers resistance during the heating process. Especially, the heated fibers showed 7.2% decrease in electrical resistance at the applied square-wave voltage of 8 V, and good temperature sensitivity (-0.15% °C-1). The as-prepared CNT fibers also featured a rapid and reversible electrical resistance response behaviour when exposed to external heating stimulation. Additionally, with the increment of temperature and twist-degree, the generated contraction actuation increased, which endowed the CNT fibers with more decrease in electrical resistance. These observations further suggested that the temperature-dependent conduction behavior of the CNT fibers with a high reversibility and repeatability was strongly correlated with their structure response to heat stimulation. As a consequence, the temperature-conduction behavior described here may be applied in other CNT-structured fibers and facilitated the improvement in their temperature-sensing applications.

7.
Small ; 17(5): e2006181, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432780

RESUMO

To address the lack of a suitable electrolyte that supports the stable operation of the electrochemical yarn muscles in air, an ionic-liquid-in-nanofibers sheathed carbon nanotube (CNT) yarn muscle is prepared. The nanofibers serve as a separator to avoid the short-circuiting of the yarns and a reservoir for ionic liquid. The ionic-liquid-in-nanofiber-sheathed yarn muscles are strong, providing an isometric stress of 10.8 MPa (about 31 times the skeletal muscles). The yarn muscles are highly robust, which can reversibly contract stably at such conditions as being knotted, wide-range humidity (30 to 90 RH%) and temperature (25 to 70 °C), and long-term cycling and storage in air. By utilizing the accumulated isometric stress, the yarn muscles achieve a high contraction rate of 36.3% s-1 . The yarn muscles are tightly bundled to lift heavy weights and grasp objects. These unique features can make the strong and robust yarn muscles as a desirable actuation component for robotic devices.


Assuntos
Líquidos Iônicos , Nanofibras , Nanotubos de Carbono , Eletrólitos , Músculo Esquelético
8.
Proc Natl Acad Sci U S A ; 113(42): 11709-11716, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27671626

RESUMO

Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.


Assuntos
Materiais Biomiméticos , Músculos , Materiais Biomiméticos/química , Fenômenos Mecânicos , Contração Muscular , Músculos/fisiologia , Nanotubos de Carbono/análise , Nanotubos de Carbono/química , Polímeros , Resistência à Tração , Têxteis/análise
9.
Small ; 14(48): e1803409, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30334376

RESUMO

As a promising energy-storage device, rechargeable Zn-air batteries have attracted considerable interests. Herein, a bifunctional oxygen electrode film prepared by adhering NiCo2 O4 nanosheets to a nitrogen and oxygen dual-doped carbon nanotubes film in a large scale is reported. The resulting self-supporting film electrode is multifunctional, which integrates a porous conducting structure for air diffusion and charge transfer, high-performance catalysts for oxygen reduction and evolution, and novel structural flexibility. The composite film demonstrates excellent oxygen reduction/evolution reaction catalytic activities with low Tafel slopes (50 mV dec-1 for oxygen reduction reaction; 92 mV dec-1 for oxygen evolution reaction). Without any additional current collector, gas diffusion layer, or binder, the obtained bifunctional film performs as an "all-in-one" air electrode in a Zn-air battery. A 50-cm-long cable-shaped Zn-air battery based on such a film air electrode exhibits high operating potentials (≈1.2 V at 0.25 mA cm-2 ), low charging-discharging overpotentials (≈0.7 V), and stable cycling performance. Moreover, the flexible cable Zn-air batteries show excellent stability under different deformation conditions. The proposed concept of constructing scalable, all-in-one, freestanding, and flexible air electrodes would pave the way to develop next-generation wearable and portable energy-storage devices.

10.
Small ; 14(38): e1801883, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30152590

RESUMO

Artificial muscles are reported in which reduced graphene oxide (rGO) is trapped in the helical corridors of a carbon nanotube (CNT) yarn. When electrochemically driven in aqueous electrolytes, these coiled CNT/rGO yarn muscles can contract by 8.1%, which is over six times that of the previous results for CNT yarn muscles driven in an inorganic electrolyte (1.3%). They can contract to provide a final stress of over 14 MPa, which is about 40 times that of natural muscles. The hybrid yarn muscle shows a unique catch state, in which 95% of the contraction is retained for 1000 s following charging and subsequent disconnection from the power supply. Hence, they are unlike thermal muscles and natural muscles, which need to consume energy to maintain contraction. Additionally, these muscles can be reversibly cycled while lifting heavy loads.

11.
Small ; 13(29)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594437

RESUMO

Air electrodes with high catalytic activity are of great importance for rechargeable zinc-air batteries. Herein, a flexible, binder-free composite air electrode for zinc-air batteries is reported, which utilizes a lightweight, conductive, and crosslinked aerogel film of carbon nanotubes (CNTs) functioned as a 3D catalyst-supporting scaffold for bifunctional cobalt (II/III) oxides and as a current collector. The composite electrode shows high catalytic activities for both oxygen reduction reaction and oxygen evolution reaction, resulting from the synergistic effect of nitrogen-doped CNTs and spinel Co3 O4 nanoparticles. Solid-state Zn-air batteries assembled using such free-standing air electrodes (without the need of additional current collectors) are bendable and show low resistances, low charge/discharge overpotentials, and a high cyclic stability.

12.
Nano Lett ; 16(12): 7677-7684, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960462

RESUMO

Twistable and stretchable fiber-based electrochemical devices having high performance are needed for future applications, including emerging wearable electronics. Weavable fiber redox supercapacitors and strain sensors are here introduced, which comprise a dielectric layer sandwiched between functionalized buckled carbon nanotube electrodes. On the macroscopic scale, the sandwiched core rubber of the fiber acts as a dielectric layer for capacitive strain sensing and as an elastomeric substrate that prevents electrical shorting and irreversible structural changes during severe mechanical deformations. On the microscopic scale, the buckled CNT electrodes effectively absorb tensile or shear stresses, providing an essentially constant electrical conductance. Consequently, the sandwich fibers provide the dual functions of (1) strain sensing, by generating approximately 115.7% and 26% capacitance changes during stretching (200%) and giant twist (1700 rad·m-1 or 270 turns·m-1), respectively, and (2) electrochemical energy storage, providing high linear and areal capacitances (2.38 mF·cm-1 and 11.88 mF·cm-2) and retention of more than 95% of initial energy storage capability under large mechanical deformations.

13.
Small ; 10(22): 4606-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25123967

RESUMO

Assembly of carbon nanotubes (CNTs) in effective and productive ways is of vital importance to their application. Recent progress in synthesis of CNTs has inspired new strategies for utilizing the unique physiochemical properties of CNTs in macroscale materials and devices. Assembling CNTs by dry processes (e.g., directly collecting CNTs in the form of freestanding films followed by pressing, stretching, and multilayer stacking instead of dispersing them in solution) not only considerably simplifies the processes but also avoids structural damage to the CNTs. Various dry-processable CNTs are reviewed, focusing on their synthesis, properties, and applications. The synthesis techniques are organized in terms of aggregative morphologies and microstructure control of CNTs. Important applications such as functional thin-film devices, strong CNT films, and composites are included. The opportunities and challenges in the synthesis techniques and fabrication of advanced composites and devices are discussed.

14.
ACS Nano ; 18(13): 9500-9510, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38477715

RESUMO

Morphing textiles, crafted using electrochemical artificial muscle yarns, boast features such as adaptive structural flexibility, programmable control, low operating voltage, and minimal thermal effect. However, the progression of these textiles is still impeded by the challenges in the continuous production of these yarn muscles and the necessity for proper structure designs that bypass operation in extensive electrolyte environments. Herein, a meters-long sheath-core structured carbon nanotube (CNT)/nylon composite yarn muscle is continuously prepared. The nylon core not only reduces the consumption of CNTs but also amplifies the surface area for interaction between the CNT yarn and the electrolyte, leading to an enhanced effective actuation volume. When driven electrochemically, the CNT@nylon yarn muscle demonstrates a maximum contractile stroke of 26.4%, a maximum contractile rate of 15.8% s-1, and a maximum power density of 0.37 W g-1, surpassing pure CNT yarn muscles by 1.59, 1.82, and 5.5 times, respectively. By knitting the electrochemical CNT@nylon artificial muscle yarns into a soft fabric that serves as both a soft scaffold and an electrolyte container, we achieved a morphing textile is achieved. This textile can perform programmable multiple motion modes in air such as contraction and sectional bending.

15.
Mater Horiz ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022827

RESUMO

The development of wearable electronics has driven the need for smart fibers with advanced multifunctional synergy. In this paper, we present a design of a multifunctional coaxial fiber that is composed of a biopolymer-derived core and an MXene/silver nanowire (AgNW) sheath by wet spinning. The fiber synergistically integrates moisture actuation, length tracing, humidity sensing, and electric heating, making it highly promising for portable devices and protective systems. The biopolymer-derived core provides deformation for moisture-sensitive actuation, while the MXene/AgNW sheath with good conductivity enables the fiber to perform electric heating, humidity sensing, and self-sensing actuation. The coaxial fiber can be programmed to rapidly desorb water molecules to shrink to its original length by using the MXene/AgNW sheath as an electrical heater. We demonstrate proof-of-concept applications based on the multifunctional fibers for thermal physiotherapy and wound healing/monitoring. The sodium alginate@MXene-based coaxial fiber presents a promising solution for the next-generation of smart wearable electronics.

16.
Small ; 9(8): 1367-72, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23463708

RESUMO

The development of low-cost and high-efficiency silicon Schottky solar cells has drawn considerable interest in recent years. A facial approach for the fabrication of carbon nanotube-silicon (CNT-Si) Schottky solar cells by using aligned double-walled CNTs drawn from a CNT array is demonstrated. The aligned CNTs help to form high CNT-Si junction density and provide efficient charge-transport paths. The power conversion efficiency (PCE) reaches 10.5%, which is higher than that of solar cells fabricated using pristine and random CNT networks. Furthermore, the cell fabrication is scalable, and the solar cells fabricated in one batch show very small PCE fluctuations.

17.
Small ; 9(1): 148-55, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22965581

RESUMO

Carbon nanotube (CNT)/semiconducting oxide hybrids are an ideal architecture for light-harvesting devices, in which the CNTs are expected to not only act as a scaffold but also provide fast transport paths for photogenerated charges in the oxide. However, the current potential of CNTs for charge transport is largely suppressed due to the nanotubes not being interconnected but isolated by the low conductive oxide coatings. Herein, a flexible and conductive CNT/TiO(2) core/shell heterostructure film is reported, with aligned and interconnected CNTs wrapped in a continuous TiO(2) coating. Without using additional transparent conducting oxide (TCO) substrates, this unique feature of the film boosts the incident photon-to-electron conversion efficiency to 32%, outperforming TiO(2) nanoparticle electrodes fabricated on TCO substrates. Moreover, the film shows high structural stability and can generate a stable photocurrent even after being bent hundreds of times.

18.
ACS Nano ; 17(13): 12809-12819, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37338135

RESUMO

Similar to natural muscle fibers, coiled artificial muscle fibers provide a straightforward contraction. However, unlike natural muscle fibers, their recovery from the contracted state to the initial state requires high stress, resulting in almost zero work during a full actuation cycle. Herein, a self-recoverable coiled artificial muscle fiber was prepared by conformally coating an elastic carbon nanotube (CNT) fiber with a very thin liquid crystal elastomer (LCE) sheath. The as-obtained muscle fiber demonstrated excellent actuation properties comprising 56.9% contractile stroke, 1522%/s contraction rate, 7.03 kW kg-1 power density, and 32,000 stable cycles. The LCE chains were helically aligned in a nematic phase, and the phase change of the LCE caused by Joule heating drove the actuation process. Moreover, the LCE/CNT fiber had a well-separated, torsionally stable, and elastic coiled structure, which permitted large contractile strokes and acted as an elastic template for external-stress-free recovery. Thus, the use of self-recoverable muscle fibers to mimic the natural muscles for object dragging, multidirectional bending, and quick striking was demonstrated.


Assuntos
Cristais Líquidos , Nanotubos de Carbono , Fibras Musculares Esqueléticas , Elastômeros/química , Fibra de Carbono , Nanotubos de Carbono/química , Cristais Líquidos/química
19.
Adv Mater ; : e2306129, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533318

RESUMO

Poly(p-phenylene-benzimidazole-terephthalamide) (PBIA) fibers with excellent mechanical properties are widely used in fields that require impact-resistant materials such as ballistic protection and aerospace. The introduction of heterocycles in polymer chains increases their flexibility and makes it easier to optimize the fiber structure. However, the inadequate orientation of polymer chains is one of the main reasons for the large difference between the measured and theoretical mechanical properties of PBIA fibers. Herein, carbon nanotubes (CNTs) are selected as an orientation seed. Their structural features allow CNTs to orient during the spinning process, which can induce an orderly arrangement of polymers and improve the orientation of the fiber microstructure. To ensure the complete 1D topology of long CNTs (≈10 µm), PBIA is used as an efficient dispersant to overcome dispersion challenges. The p-CNT/PBIA fibers (10 µm single-walled carbon nanotube 0.025 wt%) exhibit an increase of 22% in tensile strength and 23% in elongation, with a maximum tensile strength of 7.01 ± 0.31 GPa and a reinforcement efficiency of 893.6. The artificial muscle fabricated using CNT/PBIA fibers exhibits a 34.8% contraction and a 25% lifting of a 2 kg dumbbell, providing a promising paradigm for high-performance organic fibers as high-load smart actuators.

20.
Nanomicro Lett ; 15(1): 162, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386318

RESUMO

Artificial yarn muscles show great potential in applications requiring low-energy consumption while maintaining high performance. However, conventional designs have been limited by weak ion-yarn muscle interactions and inefficient "rocking-chair" ion migration. To address these limitations, we present an electrochemical artificial yarn muscle design driven by a dual-ion co-regulation system. By utilizing two reaction channels, this system shortens ion migration pathways, leading to faster and more efficient actuation. During the charging/discharging process, [Formula: see text] ions react with carbon nanotube yarn, while Li+ ions react with an Al foil. The intercalation reaction between [Formula: see text] and collapsed carbon nanotubes allows the yarn muscle to achieve an energy-free high-tension catch state. The dual-ion coordinated yarn muscles exhibit superior contractile stroke, maximum contractile rate, and maximum power densities, exceeding those of "rocking-chair" type ion migration yarn muscles. The dual-ion co-regulation system enhances the ion migration rate during actuation, resulting in improved performance. Moreover, the yarn muscles can withstand high levels of isometric stress, displaying a stress of 61 times that of skeletal muscles and 8 times that of "rocking-chair" type yarn muscles at higher frequencies. This technology holds significant potential for various applications, including prosthetics and robotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA