RESUMO
BACKGROUND: Multiple myeloma (MM) is a neoplastic disorder of plasma cells interesting mainly the elderly. MM remains an incurable disease, mostly because of the strong interplay between clonal plasma cells (cPCs) and bone marrow (BM) microenvironment. Multiparameter flow cytometry (MFC) allows the simultaneous study of the cPC immunophenotype and alterations involving other cells in BM, but rarely these data are interpreted as connected. One exception to this habit are previous studies about relationship between CD117 cPC positivity and hematopoietic progenitor cell (HPC) distribution in newly diagnosed patients. Thus we were interested in verifying the distribution of BM CD34+ HPCs in healthy controls, and monoclonal gammopathy of undetermined significance (MGUS) patients and various categories of responding/relapsing MM subjects divided according to CD117 positivity. RESULTS: Our data completely agree with precedent reports as regards untreated patients. In the group with progression of disease, CD117- patients exhibited a lower CD34 + CD19-/CD34 + CD19+ ratio vs CD117+ subjects. Among CD117- cases, newly diagnosed patients exhibited differences in distribution of HPCs vs responding myeloma subjects and patients with progressive disease. These differences reached statistical significance comparing CD117- newly diagnosed with CD117- responding cases, as reflected by CD34 + CD19-/CD34 + CD19+ ratio. In turn, no differences emerged comparing CD117+ treated and untreated patients. CONCLUSIONS: We demonstrate that administration of treatment and depth of reached response/presence of relapse imply a distinct regulation in distribution of CD34+ HPC subsets in CD117- and CD117+ patients. These differences become evident comparing untreated and treated CD117- patients, but they are impossible to detect in CD117+ cases.
RESUMO
BACKGROUND/AIMS: Multiple myeloma (MM) is caused by proliferation of clonal plasma cells (cPCs) in bone marrow (BM), associated with numerical and functional defects in immune subsets. An impairment of B cell compartment is involved in onset/progression of the disease. METHODS: By flow cytometry, we studied distribution of naïve/transitional (IgD(+)CD27(-)), memory unswitched (IgD(+)CD27(+)), memory switched (IgD(-)CD27(+)) and double negative (DN) (IgD(-)CD27(-)) B lymphocytes in BM of control subjects, and responding and relapsing patients. RESULTS: We observed an increased percentage of IgD(+)CD27(+) B cells in healthy controls vs responding patients (p<0.05). Treated non complete responders exhibited an expanded DN compartment vs stringent complete responders (p=0.011); in turn IgD(+)CD27(-) subpopulation was larger in stringent complete responders vs other responding patients (p=0.006). None of the studied B cell subsets showed clonal restriction. Correlation analysis revealed negative correlations between naïve/transitional and DN B cells in all groups, except in newly diagnosed subjects. CONCLUSIONS: This may be considered a feasible start point to explore the importance of B cells in the immunosuppressive MM BM microenvironment, correlating these findings with immunosenescence and therapy related increased risk of infection. Moreover, we propose a possible role of naïve/transitional and DN B cells as predictive markers in treated patients.