Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 19(1): 68, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461106

RESUMO

BACKGROUND: Nanomaterials can exist in different nanoforms (NFs). Their grouping may be supported by the formulation of hypotheses which can be interrogated via integrated approaches to testing and assessment (IATA). IATAs are decision trees that guide the user through tiered testing strategies (TTS) to collect the required evidence needed to accept or reject a grouping hypothesis. In the present paper, we investigated the applicability of IATAs for ingested NFs using a case study that includes different silicon dioxide, SiO2 NFs. Two oral grouping hypotheses addressing local and systemic toxicity were identified relevant for the grouping of these NFs and verified through the application of oral IATAs. Following different Tier 1 and/or Tier 2 in vitro methods of the TTS (i.e., in vitro dissolution, barrier integrity and inflammation assays), we generated the NF datasets. Furthermore, similarity algorithms (e.g., Bayesian method and Cluster analysis) were utilized to identify similarities among the NFs and establish a provisional group(s). The grouping based on Tier 1 and/or Tier 2 testing was analyzed in relation to available Tier 3 in vivo data in order to verify if the read-across was possible and therefore support a grouping decision. RESULTS: The measurement of the dissolution rate of the silica NFs in the oro-gastrointestinal tract and in the lysosome identified them as gradually dissolving and biopersistent NFs. For the local toxicity to intestinal epithelium (e.g. cytotoxicity, membrane integrity and inflammation), the biological results of the gastrointestinal tract models indicate that all of the silica NFs were similar with respect to the lack of local toxicity and, therefore, belong to the same group; in vivo data (although limited) confirmed the lack of local toxicity of NFs. For systemic toxicity, Tier 1 data did not identify similarity across the NFs, with results across different decision nodes being inconsistent in providing homogeneous group(s). Moreover, the available Tier 3 in vivo data were also insufficient to support decisions based upon the obtained in vitro results and relating to the toxicity of the tested NFs. CONCLUSIONS: The information generated by the tested oral IATAs can be effectively used for similarity assessment to support a grouping decision upon the application of a hypothesis related to toxicity in the gastrointestinal tract. The IATAs facilitated a structured data analysis and, by means of the expert's interpretation, supported read-across with the available in vivo data. The IATAs also supported the users in decision making, for example, reducing the testing when the grouping was well supported by the evidence and/or moving forward to advanced testing (e.g., the use of more suitable cellular models or chronic exposure) to improve the confidence level of the data and obtain more focused information.


Assuntos
Nanoestruturas , Dióxido de Silício , Humanos , Dióxido de Silício/toxicidade , Teorema de Bayes , Nanoestruturas/toxicidade , Medição de Risco , Inflamação
2.
Nanoscale Adv ; 6(3): 798-815, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298600

RESUMO

The dissolution of a nanomaterial (NM) in an in vitro simulant of the oro-gastrointestinal (OGI) tract is an important predictor of its biodurability in vivo. The cascade addition of simulated digestive juices (saliva, stomach and intestine), including inorganic/organic biomacromolecules and digestive enzymes (complete composition, referred to as "Type 1 formulation"), strives for realistic representation of chemical composition of the OGI tract. However, the data robustness requires consideration of analytical feasibility, such as the use of simplified media. Here we present a systematic analysis of the effects exerted by different digestive juice formulations on the dissolution% (or half-life values) of benchmark NMs (e.g., zinc oxide, titanium dioxide, barium sulfate, and silicon dioxide). The digestive juices were progressively simplified by removal of components such as organic molecules, enzymes, and inorganic molecules (Type 2, 3 and 4). The results indicate that the "Type 1 formulation" augments the dissolution via sequestration of ions by measurable factors compared to formulations without enzymes (i.e., Type 3 and 4). Type 1 formulation is thus regarded as a preferable option for predicting NM biodurability for hazard assessment. However, for grouping purposes, the relative similarity among diverse nanoforms (NFs) of a NM is decisive. Two similarity algorithms were applied, and additional case studies comprising NFs and non NFs of the same substance were included. The results support the grouping decision by simplified formulation (Type 3) as a robust method for screening and grouping purposes.

3.
Methods Mol Biol ; 2645: 41-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37202611

RESUMO

Air-liquid interface (ALI) cell cultures are considered a valid tool for the replacement of animals in biomedical research. By mimicking crucial features of the human in vivo epithelial barriers (e.g., lung, intestine, and skin), ALI cell cultures enable proper structural architectures and differentiated functions of normal and diseased tissue barriers. Thereby, ALI models realistically resemble tissue conditions and provide in vivo-like responses. Since their implementation, they are routinely used in several applications, from toxicity testing to cancer research, receiving an appreciable level of acceptance (in some cases a regulatory acceptance) as attractive testing alternatives to animals. In this chapter, an overview of the ALI cell cultures will be presented together with their application in cancer cell culture, highlighting the potential advantages and disadvantages of the model.


Assuntos
Células Epiteliais , Neoplasias , Animais , Humanos , Técnicas de Cultura de Células , Pulmão , Diferenciação Celular , Pele
4.
ALTEX ; 40(1): 125-140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35796348

RESUMO

Manufacturing and functionalizing materials at the nanoscale has led to the generation of a whole array of nanoforms (NFs) of substances varying in size, morphology, and surface characteristics. Due to financial, time, and ethical considerations, testing every unique NF for adverse effects is virtually impossible. Use of hypothesis-driven grouping and read-across approaches, as supported by the GRACIOUS Framework, represents a promising alternative to case-by-case testing that will make the risk assessment process more efficient. Through application of appropriate grouping hypotheses, the Framework facilitates the assessment of similarity between NFs, thereby supporting grouping and read-across of information, minimizing the need for new testing, and aligning with the 3R principles of replacement, reduction, and refinement of animals in toxicology studies. For each grouping hypothesis an integrated approach to testing and assessment (IATA) guides the user in data gathering and acquisition to test the hypothesis, following a structured format to facilitate efficient decision-making. Here we present the template used to generate the GRACIOUS grouping hypotheses encompassing information relevant to "Lifecycle, environmental release, and human exposure", "What they are: physicochemical characteristics", "Where they go: environmental fate, uptake, and toxicokinetics", and "What they do: human and environmental toxicity". A summary of the template-derived hypotheses focusing on human health is provided, along with an overview of the IATAs generated by the GRACIOUS project. We discuss the application and flexibility of the template, providing the opportunity to expand the application of grouping and read-across in a logical, evidence-based manner to a wider range of NFs and substances.


Assuntos
Substâncias Perigosas , Animais , Humanos , Medição de Risco , Substâncias Perigosas/toxicidade , Substâncias Perigosas/química , Toxicocinética
5.
Nanotoxicology ; 16(3): 310-332, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35704509

RESUMO

Exposure to different nanoforms (NFs) via the dermal route is expected in occupational and consumer settings and thus it is important to assess their dermal toxicity and the contribution of dermal exposure to systemic bioavailability. We have formulated four grouping hypotheses for dermal toxicity endpoints which allow NFs to be grouped to streamline and facilitate risk assessment. The grouping hypotheses are developed based on insight into how physicochemical properties of NFs (i.e. composition, dissolution kinetics, size, and flexibility) influence their fate and hazard following dermal exposure. Each hypothesis is accompanied by a tailored Integrated Approach to Testing and Assessment (IATA) that is structured as a decision tree and tiered testing strategies (TTS) for each relevant question (at decision nodes) that indicate what information is needed to guide the user to accept or reject the grouping hypothesis. To develop these hypotheses and IATAs, we gathered and analyzed existing information on skin irritation, skin sensitization, and dermal penetration of NFs from the published literature and performed experimental work to generate data on NF dissolution in sweat simulant fluids. We investigated the dissolution of zinc oxide and silicon dioxide NFs in different artificial sweat fluids, demonstrating the importance of using physiologically relevant conditions for dermal exposure. All existing and generated data informed the formulation of the grouping hypotheses, the IATAs, and the design of the TTS. It is expected that the presented IATAs will accelerate the NF risk assessment for dermal toxicity via the application of read-across.


Assuntos
Nanoestruturas , Medição de Risco , Exposição Ambiental , Nanoestruturas/química , Nanoestruturas/toxicidade , Medição de Risco/métodos , Pele , Sudorese
6.
Nanotoxicology ; 16(6-8): 776-790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36427224

RESUMO

During nanomaterial (NM) production, workers could be exposed, particularly by inhalation, to NMs and other chemicals used in the synthesis process, so it is important to have suitable biomarkers to monitor potential toxic effects. Aim of this study was to evaluate the effectiveness of the introduction of exposure mitigation measures on workers unintentionally exposed to graphene co-pollutants during production process monitoring the presumable reduction of workplace NM contamination and of early genotoxic and oxidative effects previously found on these workers. We used Buccal Micronucleus Cytome (BMCyt) assay and Fpg-comet test, resulted the most sensitive biomarkers on our first biomonitoring work, to measure the genotoxic effects. We also detected urinary oxidized nucleic acid bases 8-oxoGua, 8-oxoGuo and 8-oxodGuo to evaluate oxidative damage. The genotoxic and oxidative effects were assessed on the same graphene workers (N = 6) previously studied, comparing the results with those found in the first biomonitoring and with the control group (N = 11). This was achieved 6 months after the installation of a special filter hood (where to perform the phases at higher risk of NM emission) and the improvement of environmental and personal protective equipment. Particle number concentration decreased after the mitigation measures. We observed reduction of Micronucleus (MN) frequency and oxidative DNA damage and increase of 8-oxodGuo excretion compared to the first biomonitoring. These results, although limited by the small subject number, showed the efficacy of adopted exposure mitigation measures and the suitability of used sensitive and noninvasive biomarkers to bio-monitor over time workers involved in graphene production process.


Assuntos
Grafite , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Seguimentos , Grafite/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Testes para Micronúcleos/métodos , Biomarcadores , Dano ao DNA , Estresse Oxidativo , Ensaio Cometa
7.
NanoImpact ; 22: 100314, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559971

RESUMO

Here we describe the development of an Integrated Approach to Testing and Assessment (IATA) to support the grouping of different types (nanoforms; NFs) of High Aspect Ratio Nanomaterials (HARNs), based on their potential to cause mesothelioma. Hazards posed by the inhalation of HARNs are of particular concern as they exhibit physical characteristics similar to pathogenic asbestos fibres. The approach for grouping HARNs presented here is part of a framework to provide guidance and tools to group similar NFs and aims to reduce the need to assess toxicity on a case-by-case basis. The approach to grouping is hypothesis-driven, in which the hypothesis is based on scientific evidence linking critical physicochemical descriptors for NFs to defined fate/toxicokinetic and hazard outcomes. The HARN IATA prompts users to address relevant questions (at decision nodes; DNs) regarding the morphology, biopersistence and inflammatory potential of the HARNs under investigation to provide the necessary evidence to accept or reject the grouping hypothesis. Each DN in the IATA is addressed in a tiered manner, using data from simple in vitro or in silico methods in the lowest tier or from in vivo approaches in the highest tier. For these proposed methods we provide justification for the critical descriptors and thresholds that allow grouping decisions to be made. Application of the IATA allows the user to selectively identify HARNs which may pose a mesothelioma hazard, as demonstrated through a literature-based case study. By promoting the use of alternative, non-rodent approaches such as in silico modelling, in vitro and cell-free tests in the initial tiers, the IATA testing strategy streamlines information gathering at all stages of innovation through to regulatory risk assessment while reducing the ethical, time and economic burden of testing.


Assuntos
Amianto , Mesotelioma Maligno , Mesotelioma , Nanoestruturas , Amianto/toxicidade , Humanos , Mesotelioma/induzido quimicamente , Nanoestruturas/efeitos adversos , Medição de Risco/métodos
8.
Nanotoxicology ; 15(2): 223-237, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33373530

RESUMO

The available biomonitoring studies on workers producing/handling nanomaterials (NMs) focused on potential effects on respiratory, immune and cardio-vascular system. Aim of this study was to identify a panel of sensitive biomarkers and suitable biological matrices to evaluate particularly genotoxic and oxidative effects induced on workers unintentionally exposed to graphene or silica nanoparticles during the production process. These nanomaterials have been chosen for 'NanoKey' project, integrating the workplace exposure assessment (reported in part I) with the biomonitoring of exposed workers reported in the present work. Simultaneously to workplace exposure characterization, we monitored the workers using: Buccal Micronucleus Cytome (BMCyt) assay, fpg-comet test (lymphocytes), oxidized DNA bases 8-oxoGua, 8-oxoGuo and 8-oxodGuo measurements (urine), analysis of oxidative stress biomarkers in exhaled breath condensate (EBC), FENO measurement and cytokines release detection (serum). Since buccal cells are among the main targets of NM occupational exposure, particular attention was posed to the BMCyt assay that represents a noninvasive assay. This pilot study, performed on 12 workers vs.11 controls, demonstrates that BMCyt and fpg-comet assays are the most sensitive biomarkers of early, still reparable, genotoxic and oxidative effects. The findings suggest that these biomarkers could represent useful tools for the biomonitoring of workers exposed to nanoparticles, but they need to be confirmed on a high number of subjects. However, such biomarkers don't discriminate the effects of NM from those due to other chemicals used in the NM production process. Therefore, they could be suitable for the biomonitoring of workers exposed to complex scenario, including nanoparticles exposure.


Assuntos
Dano ao DNA , Grafite/toxicidade , Mucosa Bucal/efeitos dos fármacos , Nanopartículas/toxicidade , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Dióxido de Silício/toxicidade , Adulto , Biomarcadores/metabolismo , Células Cultivadas , Ensaio Cometa , Citocinas/metabolismo , Feminino , Grafite/administração & dosagem , Humanos , Inflamação , Masculino , Testes para Micronúcleos , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Nanopartículas/administração & dosagem , Exposição Ocupacional/análise , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Projetos Piloto , Dióxido de Silício/administração & dosagem , Local de Trabalho/normas
9.
Nanomaterials (Basel) ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204296

RESUMO

Grouping approaches of nanomaterials have the potential to facilitate high throughput and cost effective nanomaterial screening. However, an effective grouping of nanomaterials hinges on the application of suitable physicochemical descriptors to identify similarities. To address the problem, we developed an integrated testing approach coupling acellular and cellular phases, to study the full life cycle of ingested silver nanoparticles (NPs) and silver salts in the oro-gastrointestinal (OGI) tract including their impact on cellular uptake and integrity. This approach enables the derivation of exposure-dependent physical descriptors (EDPDs) upon biotransformation of undigested nanoparticles, digested nanoparticles and digested silver salts. These descriptors are identified in: size, crystallinity, chemistry of the core material, dissolution, high and low molecular weight Ag-biomolecule soluble complexes, and are compared in terms of similarities in a grouping hypothesis. Experimental results indicate that digested silver nanoparticles are neither similar to pristine nanoparticles nor completely similar to digested silver salts, due to the presence of different chemical nanoforms (silver and silver chloride nanocrystals), which were characterized in terms of their interactions with the digestive matrices. Interestingly, the cellular responses observed in the cellular phase of the integrated assay (uptake and inflammation) are also similar for the digested samples, clearly indicating a possible role of the soluble fraction of silver complexes. This study highlights the importance of quantifying exposure-related physical descriptors to advance grouping of NPs based on structural similarities.

10.
Nanomaterials (Basel) ; 11(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34685072

RESUMO

The risk assessment of ingested nanomaterials (NMs) is an important issue. Here we present nine integrated approaches to testing and assessment (IATAs) to group ingested NMs following predefined hypotheses. The IATAs are structured as decision trees and tiered testing strategies for each decision node to support a grouping decision. Implications (e.g., regulatory or precautionary) per group are indicated. IATAs integrate information on durability and biopersistence (dissolution kinetics) to specific hazard endpoints, e.g., inflammation and genotoxicity, which are possibly indicative of toxicity. Based on IATAs, groups of similar nanoforms (NFs) of a NM can be formed, such as very slow dissolving, highly biopersistent and systemically toxic NFs. Reference NMs (ZnO, SiO2 and TiO2) along with related NFs are applied as case studies to testing the oral IATAs. Results based on the Tier 1 level suggest a hierarchy of biodurability and biopersistence of TiO2 > SiO2 > ZnO, and are confirmed by in vivo data (Tier 3 level). Interestingly, our analysis suggests that TiO2 and SiO2 NFs are able to induce both local and systemic toxicity along with microbiota dysbiosis and can be grouped according to the tested fate and hazard descriptors. This supports that the decision nodes of the oral IATAs are suitable for classification and assessment of the toxicity of NFs.

11.
Nanomaterials (Basel) ; 10(9)2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32899988

RESUMO

In this contribution, we show the suitability of a 3D airway model, when coupled with a nebulizer system, for simulating workplace exposure to nanoparticles. As a proof of concept, workplace exposure to silica nanoparticles was experimentally measured in an occupational facility where nanoparticles are produced weekly, and compared with the official limit value for bulk silica materials. These values of potential exposure were simulated in a 3D airway model by nebulizing low doses (from 0.90 to 55 µg/cm2) of silica nanoparticles over a prolonged period (12 weeks of repeated exposure, 5 days per week). Overall, the results suggest the efficiency of the defense mechanisms of the respiratory system and the clearance of the breathed silica nanoparticles by the mucociliary apparatus in accordance with the recent in vivo data. This in vitro platform shows that the doses tested may correlate with the occupational exposure limit values. Such relationship could provide regulatory-oriented data useful for risk classification of nanomaterials.

12.
Nanomaterials (Basel) ; 9(7)2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31284615

RESUMO

Multi-walled carbon nanotubes (MWCNT) have many outstanding physical and chemical properties that make them useful in many applications in nanotechnology. However, these properties are reported to be potentially harmful for the human body. The effects of low and realistic doses of three well-characterized preparations of MWCNT, obtained from the Joint Research Centre (JRC) (NM-400, NM-401, and NM-402), were assessed in two murine macrophage lines, Raw264.7, of peritoneal origin, and MH-S, derived from alveolar macrophages. Macrophage viability, evaluated with two distinct methods, was significantly lowered by NM-401 (needle-like, average length 4 µm, diameter 67 nm) with IC50 values of 10 µg/cm2, whereas NM-400 and NM-402 (tangled, average lengths 846-1372 nm, diameter 11 nm) had much smaller effects. In contrast, at 10 µg/cm2, NM-400 and NM-402 induced the M1 marker Nos2 and, consistently, a sizable accumulation of nitrites in the medium, whereas NM-401 had no significant effect. None of the MWCNT preparations induced the M2 marker Arg1. Phagocytic activity, assessed in Raw264.7 macrophages, was significantly reduced in cells exposed to NM-401, but not to NM-400 or NM-402. When tested on Calu-3 bronchial epithelial cell monolayers, the three MWCNT preparations did not affect cell viability, but decreased the trans-epithelial electrical resistance at the maximal dose tested (80 µg/cm2), with the most evident effect detected for NM-401, even at 10 µg/cm2. In conclusion, among the possible structural determinants of the toxic effects exerted by MWCNT towards macrophages and airway epithelial cells, shape and length appear the most relevant at low, realistic doses.

13.
Artigo em Inglês | MEDLINE | ID: mdl-29561767

RESUMO

Nanoparticles (NP)-based inhalation systems for drug delivery can be administered in liquid form, by nebulization or using pressurized metered dose inhalers, and in solid form by means of dry powder inhalers. However, NP delivery to the lungs has many challenges including the formulation instability due to particle-particle interactions and subsequent aggregation, causing poor deposition in the small distal airways and subsequent alveolar macrophages activity, which could lead to inflammation. This work aims at providing an in vitro experimental design for investigating the correlation between the physico-chemical properties of NP, and their biological behavior, when they are used as NP-based inhalation treatments, comparing two different exposure systems. By means of an aerosol drug delivery nebulizer, human lung cells cultured at air-liquid interface (ALI) were exposed to two titanium dioxide NP (NM-100 and NM-101), obtained from the JRC repository. In parallel, ALI cultures were exposed to NP suspension by direct inoculation, i.e., by adding the NP suspensions on the apical side of the cell cultures with a pipette. The formulation stability of NP, measured as hydrodynamic size distributions, the cell viability, cell monolayer integrity, cell morphology and pro-inflammatory cytokines secretion were investigated. Our results demonstrated that the formulation stability of NM-100 and NM-101 was strongly dependent on the aggregation phenomena that occur in the conditions adopted for the biological experiments. Interestingly, comparable biological data between the two exposure methods used were observed, suggesting that the conventional exposure coupled to ALI culturing conditions offers a relevant in vitro tool for assessing the correlation between the physico-chemical properties of NP and their biological behavior, when NP are used as drug delivery systems.


Assuntos
Aerossóis/administração & dosagem , Pulmão/metabolismo , Nanopartículas/administração & dosagem , Titânio/administração & dosagem , Titânio/farmacocinética , Administração por Inalação , Aerossóis/química , Células Cultivadas , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química , Tamanho da Partícula
14.
Artigo em Inglês | MEDLINE | ID: mdl-29430177

RESUMO

Objective: The objective of the study was to determine whether the cadmium-derived materials induce intracellular protein citrullination. Methods: Human A549 lung epithelial cells were exposed to cadmium in soluble and nanoparticulate forms represented by cadmium chloride (CdCl2) and cadmium oxide (CdO), respectively, and their combinations with ultrafine carbon black (ufCB) produced by high temperature combustion, imitating cigarette burning. Protein citrullination in cell lysates was analyzed by Western immunoblotting and verified by immunofluorescent confocal microscopy. Target citrullinated proteins were identified by proteomic analysis. Results: CdO, ufCB and its combination with CdCl2 and CdO after high temperature combustion induced protein citrullination in cultured human lung epithelial cells, as detected by immunoblotting with anti-citrullinated protein antibody. Cytokeratins of type II (1, 2, 5, 6A, 6B and 77) and type I (9, 10) were identified as major intracellular citrullination targets. Immunofluorescent staining confirmed the localization of citrullinated proteins both in the cytoplasm and cell nuclei. Conclusion: Cadmium oxide nanoparticle exposure facilitated post-translational citrullination of proteins.


Assuntos
Cloreto de Cádmio/toxicidade , Compostos de Cádmio/toxicidade , Citrulina/metabolismo , Células Epiteliais/efeitos dos fármacos , Queratinas/metabolismo , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Células A549 , Citrulinação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Medição de Risco , Fumar/efeitos adversos
15.
R Soc Open Sci ; 5(1): 171113, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29410826

RESUMO

Silver nanoparticle-based antimicrobials can promote a long lasting bactericidal effect without detrimental toxic side effects. However, there is not a clear and complete protocol to define and relate the properties of the particles (size, shape, surface charge, ionic content) with their specific activity. In this paper, we propose an effective multi-step approach for the identification of a 'purpose-specific active applicability window' to maximize the antimicrobial activity of medical devices containing silver nanoparticles (Ag NPs) (such as surface coaters), minimizing any consequent risk for human health (safety by design strategy). The antimicrobial activity and the cellular toxicity of four types of Ag NPs, differing in their coating composition and concentration have been quantified. Through the implementation of flow-field flow fractionation, Ag NPs have been characterized in terms of metal release, size and shape. The particles are fractionated in the process while being left unmodified, allowing for the identification of biological particle-specific contribution. Toxicity and inflammatory response in vitro have been assessed on human skin models, while antimicrobial activity has been monitored with both non-pathogenic and pathogenic Escherichia coli. The main benefit associated with such approach is the comprehensive assessment of the maximal effectiveness of candidate nanomaterials, while simultaneously indexing their properties against their safety.

16.
Toxicol Sci ; 150(1): 40-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26612840

RESUMO

Amorphous silica nanoparticles (ASNP) can be synthetized via several processes, 2 of which are the thermal route (to yield pyrogenic silica) and the wet route from a solution containing silicate salts (to obtain precipitated, colloidal, mesoporous silica, or silica gel). Both methods of synthesis lead to ASNP that are applied as food additive (E551). Current food regulation does not require that production methods of additives are indicated on the product label, and, thus, the ASNP are listed without mentioning the production method. Recent results indicate, however, that pyrogenic ASNP are more cytotoxic than ASNP synthesized through the wet route. The present study was aimed at clarifying if 2 representative preparations of ASNP, NM-203 (pyrogenic) and NM-200 (precipitated), of comparable size, specific surface area, surface charge, and hydrodynamic radius in complete growth medium, had different effects on 2 murine macrophage cell lines (MH-S and RAW264.7 cells). Our results show that, when incubated in protein-rich fluids, NM-203 adsorbed on their surface more proteins than NM-200 and, once incubated with macrophages, elicited a greater oxidative stress, assessed from Hmox1 induction and ROS production. Flow cytometry and helium ion microscopy indicated that pyrogenic NM-203 interacted with macrophages more strongly than the precipitated NM-200 and triggered a more evident inflammatory response, evaluated with Nos2 induction, NO production and the secretion of TNF-α, IL-6 and IL-1ß. Moreover, both ASNP synergized macrophage activation by bacterial lipopolysaccharide (LPS), with a higher effect observed for NM-203. In conclusion, the results presented here demonstrate that, compared to precipitated, pyrogenic ASNP exhibit enhanced interaction with serum proteins and cell membrane, and cause a larger oxidative stress and stronger proinflammatory effects in macrophages. Therefore, these 2 nanomaterials should not be considered biologically equivalent.


Assuntos
Imunidade Inata/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Animais , Técnicas de Cultura de Células , Linhagem Celular , Precipitação Química , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Macrófagos Alveolares/imunologia , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/metabolismo , Nanotecnologia/métodos , Óxido Nítrico/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Propriedades de Superfície
17.
Nanotoxicology ; 9(2): 230-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24873759

RESUMO

Aggregates of multiwalled carbon nanotubes (MWCNT) impair the barrier properties of human airway cell monolayers. To resolve the mechanism of the barrier alteration, monolayers of Calu-3 human airway epithelial cells were exposed to aggregated MWCNT. At the cell-population level, trans-epithelial electrical resistance (TEER) was used as an indicator of barrier competence, caspase activity was assessed with standard biochemical assays, and cell viability was investigated by biochemical techniques and high-throughput screening (HTS) technique based on automated epifluorescence microscopy. At cell level, the response to MWCNT was investigated with confocal microscopy, by evaluating cell death (calcein/propidium iodide (PI)), proliferation (Ki-67), and apoptosis (caspase activity). At the cell-population level, exposure to aggregated MWCNT caused a decrease in TEER, which was not associated with a decrease in cell viability or onset of apoptosis even after an 8-d exposure. In contrast, confocal imaging demonstrated contact with MWCNT aggregates triggered cell death after 24 h of exposure. In the presence of a natural surfactant, both TEER decrease and contact-mediated toxicity were mitigated. With confocal imaging, increased proliferation and apoptosis were detected in Calu-3 cells next to the aggregates. Contact-mediated cytotoxicity was recorded in two additional cell lines (BEAS-2B and A549) derived from human airways. Similar results were confirmed by adopting two additional MWCNT preparations with different physico-chemical features. This indicates MWCNT caused localized damage to airway epithelial monolayers in vitro and altered the apoptotic and proliferative rate of epithelial cells in close proximity to the aggregates. These findings provide evidence on the pathway by which MWCNT aggregates impair airway barrier function, and support the use of imaging techniques as a possible regulatory-decision supporting tool to identify effects of aggregated nanomaterials not readily detected at cell population level.


Assuntos
Bioensaio/métodos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Nanocompostos/toxicidade , Nanotubos de Carbono/toxicidade , Testes de Toxicidade/métodos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Nanotubos de Carbono/química , Propriedades de Superfície
18.
PLoS One ; 10(5): e0127174, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996496

RESUMO

Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry - hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO - uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques - precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially 'weak-embryotoxic' and ZnO and SiO2 NMs as 'non-embryotoxic'. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects.


Assuntos
Nanoestruturas/química , Nanoestruturas/toxicidade , Óxidos/química , Óxidos/toxicidade , Testes de Toxicidade , Animais , Técnicas de Cultura de Células , Células-Tronco Embrionárias/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Células Intersticiais do Testículo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Células de Sertoli/efeitos dos fármacos , Dióxido de Silício , Titânio , Óxido de Zinco
19.
Prog Neuropsychopharmacol Biol Psychiatry ; 35(6): 1461-71, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21093519

RESUMO

Exposure to stressful life events is intimately linked with vulnerability to neuropsychiatric disorders such as major depression. Pre-clinical animal models offer an effective tool to disentangle the underlying molecular mechanisms. In particular, the 129SvEv strain is often used to develop transgenic mouse models but poorly characterized as far as behavior and neuroendocrine functions are concerned. Here we present a comprehensive characterization of 129SvEv male mice's vulnerability to social stress-induced depression-like disorders and physiological comorbidities. We employed a well characterized mouse model of chronic social stress based on social defeat and subordination. Subordinate 129SvEv mice showed body weight gain, hyperphagia, increased adipose fat pads weight and basal plasma corticosterone. Home cage phenotyping revealed a suppression of spontaneous locomotor activity and transient hyperthermia. Subordinate 129SvEv mice also showed marked fearfulness, anhedonic-like response toward a novel but palatable food, increased anxiety in the elevated plus maze and social avoidance of an unfamiliar male mouse. A direct measured effect of the stressfulness of the living environment, i.e. the amount of daily aggression received, predicted the degree of corticosterone level and locomotor activity but not of the other parameters. This is the first study validating a chronic subordination stress paradigm in 129SvEv male mice. Results demonstrated remarkable stress vulnerability and establish the validity to use this mouse strain as a model for depression-like disorders.


Assuntos
Depressão/psicologia , Dominação-Subordinação , Camundongos da Linhagem 129/fisiologia , Camundongos da Linhagem 129/psicologia , Estresse Psicológico/psicologia , Agressão/fisiologia , Agressão/psicologia , Animais , Ansiedade/complicações , Ansiedade/psicologia , Doença Crônica , Corticosterona/sangue , Depressão/sangue , Depressão/complicações , Depressão/fisiopatologia , Modelos Animais de Doenças , Febre/complicações , Febre/fisiopatologia , Hiperfagia/complicações , Hiperfagia/psicologia , Masculino , Camundongos , Atividade Motora/fisiologia , Comportamento Social , Estresse Psicológico/sangue , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA