RESUMO
The public health risk posed by Listeria monocytogenes in ready-to-eat (RTE) foods depends on the effectiveness of its control at every stage of the production process and the strain involved. Analytical methods currently in use are limited to the identification/quantification of L. monocytogenes at the species level, without distinguishing virulent from hypovirulent strains. In these products, according to EU Regulation 2073/2005, L. monocytogenes is a mandatory criterion irrespective of strain virulence level. Indeed, this species encompasses a diversity of strains with various pathogenic potential, reflecting genetic heterogeneity of the species itself. Thus, the detection of specific L. monocytogenes virulence genes can be considered an important target in laboratory food analysis to assign different risk levels to foods contaminated by strains carrying different genes. In 2015-2016, a severe invasive listeriosis outbreak occurred in central Italy, leading to the intensification of routine surveillance and strain characterization for virulence genetic markers. A new multiplex real-time polymerase chain reaction targeting main virulence genes has been developed and validated against the enzyme-linked fluorescent assay (ELFA) culture-based method. Results of the improved surveillance program are now reported in this study.
Assuntos
Listeria monocytogenes , Listeriose , Microbiologia de Alimentos , Humanos , Itália , Listeria monocytogenes/genética , Listeriose/epidemiologia , Virulência/genéticaRESUMO
Italy is one of the main producers and exporters of cheese made from unpasteurized sheep milk. Since raw milk and its derived products are known sources of human infections, cheese produced from raw sheep milk could pose a microbiological threat to public health. Hence, the objectives of the study were: to characterize the potential risk of the presence of pathogens Escherichia coli O157, Listeria monocytogenes, and Salmonella in raw ovine milk destined for cheese production obtained from all the sheep farms (n = 24) in the Marches region (Central Italy) that directly transform raw milk into cheeses and to evaluate the equivalence between the analytical methods applied. A three-step molecular method (simultaneous culture enrichment, species-specific DNA magnetic isolation, and multiplex real-time polymerase chain reaction) was used for milk (n = 143) and cheese (n = 5) analysis over a 3-year period. L. monocytogenes was not detected on any of the farms, while E. coli O157 was found on three farms, although only using the molecular method. Four farms tested positive for Salmonella spp., and Salmonella enterica subsp. diarizonae serovar 61:k:1,5,7 was isolated in one of those cases. This information highlights the need to develop preventative measures to guarantee a high level of consumer safety for this specific product line, and the molecular method could be a time-saving and sensitive tool to be used in routine diagnosis.
Assuntos
Queijo/microbiologia , Escherichia coli O157/isolamento & purificação , Contaminação de Alimentos , Inspeção de Alimentos/métodos , Listeria monocytogenes/isolamento & purificação , Leite/microbiologia , Salmonella/isolamento & purificação , Criação de Animais Domésticos/instrumentação , Animais , Contagem de Colônia Microbiana , Contaminação de Equipamentos/prevenção & controle , Escherichia coli O157/classificação , Escherichia coli O157/crescimento & desenvolvimento , Feminino , Contaminação de Alimentos/prevenção & controle , Itália , Listeria monocytogenes/classificação , Listeria monocytogenes/crescimento & desenvolvimento , Tipagem Molecular/métodos , Salmonella/classificação , Salmonella/crescimento & desenvolvimento , Salmonella enterica/classificação , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/isolamento & purificação , Carneiro Doméstico/crescimento & desenvolvimento , Carneiro Doméstico/microbiologia , Análise Espaço-TemporalRESUMO
A survey was conducted from 2018 to 2023 to assess the presence of Salmonella in 280 hunted wild boar (carcasses after evisceration and skinning, N = 226; liver, N = 258; and fecal samples, N = 174). The overall prevalence was 2.86% (confidence interval 95%, 1.45-5.45%) with five positive samples detected in carcasses, three in the liver, and one in a fecal sample. This prevalence was in line with those found in nearby areas denoting a low number of positive samples. Positive animals were over 24 months of age and weighed, before skinning, 59.00 ± 9.11 Kg and no difference was detected in microbial loads between samples positive and negative for Salmonella (aerobic colony count of 4.59 and 4.66 log CFU/400 cm2, and Enterobacteriaceae count of 2.89 and 2.73 log CFU/400 cm2 (mean values) in positive and negative subjects, respectively). Salmonella Stanleyville was the most frequently isolated serotype. A semiquantitative risk assessment was conducted for the first time in game meat considering two products, meat cuts intended for cooking and fermented dry sausages. Only proper cooking can reduce the risk of ingestion of Salmonella to the minimum for consumers, whereas ready-to-eat dry sausages constitute risk products in terms of foodborne Salmonellosis (risk score of 64 out of 100).
RESUMO
A profile of the microbial safety and hygiene of cheese in central Italy was defined based on an analysis of 1373 cheeses sampled under the Italian National Control Plan for Food Safety spanning the years 2013 to 2020 and tested according to Commission Regulation (EC) No. 2073/2005 (as amended). A total of 97.4% of cheese samples were assessed as being satisfactory for food safety criteria and 80.5% for process hygiene criteria. Staphylococcal enterotoxin was found in 2/414 samples, while Salmonella spp. and Listeria monocytogenes were detected in 15 samples out of 373 and 437, respectively. Escherichia coli and coagulase-positive staphylococci counts were found unsatisfactory in 12/61 and 17/88 cheese samples, respectively. The impact of milking species, milk thermal treatment, and cheese hardness category was considered. A statistically significant association (p < 0.05) was found between milk thermal treatment and the prevalence of coagulase-positive staphylococci and Listeria monocytogenes and between hardness and unsatisfactory levels of Escherichia coli. The data depict a contained public health risk associated with these products and confirm, at the same time, the importance of strict compliance with good hygiene practices during milk and cheese production. These results can assist in bolstering risk analysis and providing insights for food safety decision making.
RESUMO
The Arcobacter genus comprises a group of bacteria widely distributed in different habitats that can be spread throughout the food chain. Fluoroquinolones and aminoglycosides represent the most common antimicrobial agents used for the treatment of Arcobacter infections. However, the increasing trend of the antimicrobial resistance of this pathogen leads to treatment failures. Moreover, the test implementation and interpretation are hindered by the lack of reference protocols and standard interpretive criteria. The purpose of our study was to assess the antibiotic resistance pattern of 17 A. butzleri strains isolated in Central Italy from fresh vegetables, sushi, chicken breast, and clinical human samples to provide new and updated information about the antimicrobial resistance epidemiology of this species. Antimicrobial susceptibility testing was carried out by the European Committee on Antimicrobial Susceptibility Testing (EUCAST)'s disc diffusion method. All the strains were multidrug resistant, with 100% resistance to tetracyclines and cefotaxime (third generation cephalosporins). Some differences were noticed among the strains, according to the isolation source (clinical isolates, food of animal origin, or fresh vegetables), with a higher sensitivity to streptomycin detected only in the strains isolated from fresh vegetables. Our data, together with other epidemiological information at the national or European Union (EU) level, may contribute to developing homogeneous breakpoints. However, the high prevalence of resistance to a wide range of antimicrobial classes makes this microorganism a threat to human health and suggests that its monitoring should be considered by authorities designated for food safety.
RESUMO
Listeria monocytogenes (Lm) is the causative agent of human listeriosis. Lm strains have different virulence potential. For this reason, we preliminarily characterised via Whole-Genome Sequencing (WGS) some Lm strains for their key genomic features and virulence-associated determinants, assigning the clonal complex (CC). Moreover, the ability of the same strains to adhere to and invade human colon carcinoma cell line Caco-2, evaluating the possible correspondence with their genetic virulence profile, was also assessed. The clinical strains typed belonged to clonal complex (CC)1, CC31, and CC101 and showed a very low invasiveness. The Lm strains isolated from food were assigned to CC1, CC7, CC9, and CC121. All CC1 carried the hypervirulence pathogenicity island LIPI-3 in addition to LIPI-1. Premature stop codons in the inlA gene were found only in Lm of food origin belonging to CC9 and CC121. The presence of LIPI2_inlII was observed in all the CCs except CC1. The CC7 strain, belonging to an epidemic cluster, also carried the internalin genes inlG and inlL and showed the highest level of invasion. In contrast, the human CC31 strain lacked the lapB and vip genes and presented the lowest level of invasiveness. In Lm, the genetic determinants of hypo- or hypervirulence are not necessarily predictive of a cell adhesion and/or invasion ability in vitro. Moreover, since listeriosis results from the interplay between host and virulence features of the pathogen, even hypovirulent clones are able to cause infection in immunocompromised people.