Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 235(3): 1877-1887, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31397494

RESUMO

Cancer stem cells (CSCs) are a subpopulation with the properties of extensive self-renewal, capability to generate differentiated cancer cells and resistance to therapies. We have previously shown that malignant pleural effusions (MPEs) from patients with non-small-cell lung cancer (NSCLC) represent a valuable source of cancer cells that can be grown as three-dimensional (3D) spheroids enriched for stem-like features, which depend on the activation of the Yes-associated protein-transcriptional coactivator with PDZ-binding motif (YAP-TAZ)/Wnt-ßcatenin/stearoyl-CoA desaturase 1 (SCD1) axis. Here, we describe a novel support, called CytoMatrix, for the characterization of limited amounts of cancer cells isolated from MPEs of patients with NSCLC. Our results show that this synthetic matrix allows an easy and fast characterization of several epithelial cellular markers. The use of CytoMatrix to study CSCs subpopulation confirms that SCD1 protein expression is enhanced in 3D spheroids when compared with 2D adherent cell cultures. YAP/TAZ nuclear-cytoplasmic distribution analysed by CytoMatrix in 3D spheroids is highly heterogeneous and faithfully reproduces what is observed in tumour biopsies. Our results confirm and extend the robustness of our workflow for the isolation and phenotypic characterization of primary cancer cells derived from the lung MPEs and underscore the role of SCD1.


Assuntos
Citodiagnóstico/métodos , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Derrame Pleural Maligno/patologia , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células/métodos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Derrame Pleural Maligno/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Estearoil-CoA Dessaturase/metabolismo , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
4.
Angew Chem Int Ed Engl ; 55(37): 11193-11197, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27404798

RESUMO

Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are endogenous lipid mediators that suppress inflammation. Their actions are terminated by the intracellular cysteine amidase, N-acylethanolamine acid amidase (NAAA). Even though NAAA may offer a new target for anti-inflammatory therapy, the lipid-like structures and reactive warheads of current NAAA inhibitors limit the use of these agents as oral drugs. A series of novel benzothiazole-piperazine derivatives that inhibit NAAA in a potent and selective manner by a non-covalent mechanism are described. A prototype member of this class (8) displays high oral bioavailability, access to the central nervous system (CNS), and strong activity in a mouse model of multiple sclerosis (MS). This compound exemplifies a second generation of non-covalent NAAA inhibitors that may be useful in the treatment of MS and other chronic CNS disorders.


Assuntos
Amidoidrolases/antagonistas & inibidores , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Inibidores Enzimáticos/farmacologia , Etanolaminas/farmacologia , Esclerose Múltipla/tratamento farmacológico , Ácidos Oleicos/farmacologia , Ácidos Palmíticos/farmacologia , Administração Oral , Amidas , Amidoidrolases/metabolismo , Animais , Relação Dose-Resposta a Droga , Endocanabinoides/administração & dosagem , Endocanabinoides/química , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Etanolaminas/administração & dosagem , Etanolaminas/química , Camundongos , Estrutura Molecular , Esclerose Múltipla/metabolismo , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/química , Ácidos Palmíticos/administração & dosagem , Ácidos Palmíticos/química , Relação Estrutura-Atividade
5.
NMR Biomed ; 27(2): 129-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24142746

RESUMO

The metabolic profiles of glioblastoma stem-like cells (GSCs) growing in neurospheres were examined by (1)H NMR spectroscopy. Spectra of two GSC lines, labelled 1 and 83, from tumours close to the subventricular zone of the temporal lobe were studied in detail and compared with those of neural stem/progenitor cells from the adult olfactory bulb (OB-NPCs) and of the T98G glioblastoma cell line. In both GSCs, signals from myoinositol (Myo-I), UDP-hexosamines (UDP-Hex) and glycine indicated an astrocyte/glioma metabolism. For line 1, the presence of signals from N-acetyl aspartate, GABA and creatine pointed to a neuronal fingerprint. These metabolites were almost absent from line 83 spectra, whereas lipid signals, absent from normal neural lineages, were intense in line 83 spectra and remained low in those of line 1, irrespective of apoptotic fate. Spectra of OB-NPC cells displayed strong similarities with those from line 1, with low lipid signals and clearly detectable neuronal signals. In contrast, the spectral profile of line 83 was more similar to that of T98G, displaying high lipids and nearly complete absence of the neuronal markers. A mixed neural-astrocyte metabolic phenotype with a strong neuronal fingerprint was therefore found in line 1, while an astrocytic/glioma-like metabolism prevailed in line 83. We found a signal assigned to the amide proton of N-acetyl galactosamine in GSC lines and in OB-NPC spectra, whereas it was absent from those of T98G cells. This signal may be related to a stem-cell-specific protein glycosylation pattern and is therefore suggested as a marker of cell multipotency. Other GSC lines from patients with different clinical outcomes were then examined. Unsupervised analysis of spectral data from 13 lines yielded two clusters, with six lines resembling spectral features of line 1 and seven resembling those of line 83, suggesting that distinct metabolic phenotypes may be present in GSC lines.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Linhagem Celular Tumoral , Humanos , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
J Exp Clin Cancer Res ; 43(1): 182, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951853

RESUMO

BACKGROUND: During targeted treatment, HER2-positive breast cancers invariably lose HER2 DNA amplification. In contrast, and interestingly, HER2 proteins may be either lost or gained. To longitudinally and systematically appreciate complex/discordant changes in HER2 DNA/protein stoichiometry, HER2 DNA copy numbers and soluble blood proteins (aHER2/sHER2) were tested in parallel, non-invasively (by liquid biopsy), and in two-dimensions, hence HER2-2D. METHODS: aHER2 and sHER2 were assessed by digital PCR and ELISA before and after standard-of-care treatment of advanced HER2-positive breast cancer patients (n=37) with the antibody-drug conjugate (ADC) Trastuzumab-emtansine (T-DM1). RESULTS: As expected, aHER2 was invariably suppressed by T-DM1, but this loss was surprisingly mirrored by sHER2 gain, sometimes of considerable entity, in most (30/37; 81%) patients. This unorthodox split in HER2 oncogenic dosage was supported by reciprocal aHER2/sHER2 kinetics in two representative cases, and an immunohistochemistry-high status despite copy-number-neutrality in 4/5 available post-T-DM1 tumor re-biopsies from sHER2-gain patients. Moreover, sHER2 was preferentially released by dying breast cancer cell lines treated in vitro by T-DM1. Finally, sHER2 gain was associated with a longer PFS than sHER2 loss (mean PFS 282 vs 133 days, 95% CI [210-354] vs [56-209], log-rank test p=0.047), particularly when cases (n=11) developing circulating HER2-bypass alterations during T-DM1 treatment were excluded (mean PFS 349 vs 139 days, 95% CI [255-444] vs [45-232], log-rank test p=0.009). CONCLUSIONS: HER2 gain is adaptively selected in tumor tissues and recapitulated in blood by sHER2 gain. Possibly, an increased oncogenic dosage is beneficial to the tumor during anti-HER2 treatment with naked antibodies, but favorable to the host during treatment with a strongly cytotoxic ADC such as T-DM1. In the latter case, HER2-gain tumors may be kept transiently in check until alternative oncogenic drivers, revealed by liquid biopsy, bypass HER2. Whichever the interpretation, HER2-2D might help to tailor/prioritize anti-HER2 treatments, particularly ADCs active on aHER2-low/sHER2-low tumors. TRIAL REGISTRATION: NCT05735392 retrospectively registered on January 31, 2023 https://www. CLINICALTRIALS: gov/search?term=NCT05735392.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Biópsia Líquida/métodos , Pessoa de Meia-Idade , Ado-Trastuzumab Emtansina/uso terapêutico , Idoso , Trastuzumab/uso terapêutico , Trastuzumab/farmacologia , Adulto , Biomarcadores Tumorais
7.
Cell Death Dis ; 15(4): 303, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684666

RESUMO

Scientific literature supports the evidence that cancer stem cells (CSCs) retain inside low reactive oxygen species (ROS) levels and are, therefore, less susceptible to cell death, including ferroptosis, a type of cell death dependent on iron-driven lipid peroxidation. A collection of lung adenocarcinoma (LUAD) primary cell lines derived from malignant pleural effusions (MPEs) of patients was used to obtain 3D spheroids enriched for stem-like properties. We observed that the ferroptosis inducer RSL3 triggered lipid peroxidation and cell death in LUAD cells when grown in 2D conditions; however, when grown in 3D conditions, all cell lines underwent a phenotypic switch, exhibiting substantial resistance to RSL3 and, therefore, protection against ferroptotic cell death. Interestingly, this phenomenon was reversed by disrupting 3D cells and growing them back in adherence, supporting the idea of CSCs plasticity, which holds that cancer cells have the dynamic ability to transition between a CSC state and a non-CSC state. Molecular analyses showed that ferroptosis resistance in 3D spheroids correlated with an increased expression of antioxidant genes and high levels of proteins involved in iron storage and export, indicating protection against oxidative stress and low availability of iron for the initiation of ferroptosis. Moreover, transcriptomic analyses highlighted a novel subset of genes commonly modulated in 3D spheroids and potentially capable of driving ferroptosis protection in LUAD-CSCs, thus allowing to better understand the mechanisms of CSC-mediated drug resistance in tumors.


Assuntos
Adenocarcinoma de Pulmão , Ferroptose , Neoplasias Pulmonares , Células-Tronco Neoplásicas , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular Tumoral , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Ferro/metabolismo
8.
Clin Epigenetics ; 15(1): 197, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129913

RESUMO

BACKGROUND: Lysine demethylase enzymes (KDMs) are an emerging class of therapeutic targets, that catalyse the removal of methyl marks from histone lysine residues regulating chromatin structure and gene expression. KDM4A isoform plays an important role in the epigenetic dysregulation in various cancers and is linked to aggressive disease and poor clinical outcomes. Despite several efforts, the KDM4 family lacks successful specific molecular inhibitors. RESULTS: Herein, starting from a structure-based fragments virtual screening campaign we developed a synergic framework as a guide to rationally design efficient KDM4A inhibitors. Commercial libraries were used to create a fragments collection and perform a virtual screening campaign combining docking and pharmacophore approaches. The most promising compounds were tested in-vitro by a Homogeneous Time-Resolved Fluorescence-based assay developed for identifying selective substrate-competitive inhibitors by means of inhibition of H3K9me3 peptide demethylation. 2-(methylcarbamoyl)isonicotinic acid was identified as a preliminary active fragment, displaying inhibition of KDM4A enzymatic activity. Its chemical exploration was deeply investigated by computational and experimental approaches which allowed a rational fragment growing process. The in-silico studies guided the development of derivatives designed as expansion of the primary fragment hit and provided further knowledge on the structure-activity relationship. CONCLUSIONS: Our study describes useful insights into key ligand-KDM4A protein interaction and provides structural features for the development of successful selective KDM4A inhibitors.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Lisina , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Metilação de DNA , Histonas/metabolismo , Relação Estrutura-Atividade
9.
Front Immunol ; 14: 1221587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38343436

RESUMO

Background: Few data are available about the durability of the response, the induction of neutralizing antibodies, and the cellular response upon the third dose of the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in hemato-oncological patients. Objective: To investigate the antibody and cellular response to the BNT162b2 vaccine in patients with hematological malignancy. Methods: We measured SARS-CoV-2 anti-spike antibodies, anti-Omicron neutralizing antibodies, and T-cell responses 1 month after the third dose of vaccine in 93 fragile patients with hematological malignancy (FHM), 51 fragile not oncological subjects (FNO) aged 80-92, and 47 employees of the hospital (healthcare workers, (HW), aged 23-66 years. Blood samples were collected at day 0 (T0), 21 (T1), 35 (T2), 84 (T3), 168 (T4), 351 (T pre-3D), and 381 (T post-3D) after the first dose of vaccine. Serum IgG antibodies against S1/S2 antigens of SARS-CoV-2 spike protein were measured at every time point. Neutralizing antibodies were measured at T2, T3 (anti-Alpha), T4 (anti-Delta), and T post-3D (anti-Omicron). T cell response was assessed at T post-3D. Results: An increase in anti-S1/S2 antigen antibodies compared to T0 was observed in the three groups at T post-3D. After the third vaccine dose, the median antibody level of FHM subjects was higher than after the second dose and above the putative protection threshold, although lower than in the other groups. The neutralizing activity of antibodies against the Omicron variant of the virus was tested at T2 and T post-3D. 42.3% of FHM, 80,0% of FNO, and 90,0% of HW had anti-Omicron neutralizing antibodies at T post-3D. To get more insight into the breadth of antibody responses, we analyzed neutralizing capacity against BA.4/BA.5, BF.7, BQ.1, XBB.1.5 since also for the Omicron variants, different mutations have been reported especially for the spike protein. The memory T-cell response was lower in FHM than in FNO and HW cohorts. Data on breakthrough infections and deaths suggested that the positivity threshold of the test is protective after the third dose of the vaccine in all cohorts. Conclusion: FHM have a relevant response to the BNT162b2 vaccine, with increasing antibody levels after the third dose coupled with, although low, a T-cell response. FHM need repeated vaccine doses to attain a protective immunological response.


Assuntos
COVID-19 , Neoplasias Hematológicas , Glicoproteína da Espícula de Coronavírus , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
Int J Cancer ; 131(7): E1067-77, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22492283

RESUMO

Malignant transformation of cells resulting from enhanced proliferation and aberrant differentiation is often accompanied by changes in transient receptor potential vanilloid (TRPV) channels expression. In gliomas, recent evidence indicates that TRPV type 2 (TRPV2) negatively controls glioma cell survival and proliferation. In addition, cannabinoids, the ligands of both cannabinoid and TRPV2 receptors, promote glioblastoma stem-like cells (GSCs) differentiation and inhibit gliomagenesis. Herein, we provide evidence on the expression of TRPV2 in human GSCs and that GSCs differentiation reduces nestin and progressively increases both the glial fibrillary acidic protein (GFAP) and TRPV2 expression. Therefore, we evaluated the role of TRPV2 cation channel in GSC lines differentiation. Treatment of GSC lines with the TRPV antagonist Ruthenium Red, with ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid or knockdown of TRPV2 gene during differentiation, decreases GFAP and class III beta-tubulin (ß(III)-tubulin) expression; conversely, phorbol-12-myristate-13-acetate stimulates GSCs proliferation, reduces TRPV2 expression and partially reverts astroglial differentiation. In addition, forced TRPV2 expression in GSC lines by stable TRPV2 transfection increases GFAP and ß(III)-tubulin expression and parallelly reduces proliferation. Finally, TRPV2 overexpression inhibits GSCs proliferation in a xenograft mouse model, as shown by reduced tumor diameter and mitotic index, and promotes the differentiation of GSCs toward a more mature glial phenotype. Overall, our results demonstrate that TRPV2 promotes in vitro and in vivo GSCs differentiation and inhibits their proliferation. Better understanding of the molecular mechanisms that regulate the balance between proliferation and differentiation of GSCs would lead to more specific and efficacious pharmacological approaches.


Assuntos
Diferenciação Celular/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Canais de Cátion TRPV/genética , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Ésteres de Forbol/farmacologia
11.
J Med Chem ; 65(11): 7438-7475, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35604326

RESUMO

The use of peptides as therapeutics has often been associated with several drawbacks such as poor absorption, low stability to proteolytic digestion, and fast clearance. Peptidomimetics are developed by modifications of native peptides with the aim of obtaining molecules that are more suitable for clinical development and, for this reason, are widely used as tools in medicinal chemistry programs. The effort to disclose innovative peptidomimetic therapies is recurrent and constantly evolving as demonstrated by the new lead compounds in clinical trials. Synthetic strategies for the development of peptidomimetics have also been implemented with time. This perspective highlights some of the most recent efforts for the design and synthesis of peptidomimetic agents together with their biological evaluation toward a panel of targets.


Assuntos
Peptidomiméticos , Química Farmacêutica , Peptídeos/química , Peptidomiméticos/química
12.
Theranostics ; 12(17): 7420-7430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438490

RESUMO

Rationale: Metastatic melanoma is the most aggressive and dangerous form of skin cancer. The introduction of immunotherapy with Immune checkpoint Inhibitors (ICI) and of targeted therapy with BRAF and MEK inhibitors for BRAF mutated melanoma, has greatly improved the clinical outcome of these patients. Nevertheless, response to therapy remains highly variable and the development of drug resistance continues to be a daunting challenge. Within this context there is a need to develop diagnostic tools capable of predicting response or resistance to therapy in order to select the best therapeutic approach. Over the years, accumulating evidence brought to light the role of microRNAs (miRNAs) as disease biomarkers. Methods: In particular, the detection of miRNAs in whole blood or specific blood components such as serum or plasma, allows these molecules to be good candidates for diagnosis, prognosis and for monitoring response to anticancer therapy. In this paper, we evaluated circulating basal levels of 6 previously identified miRNAs in serum samples of 70 BRAF-mutant melanoma patients before starting targeted therapy. Results: Results show that the circulating levels of the oncosuppressor miR-579-3p and of the oncomiR miR-4488 are able to predict progression free survival (PFS) but not overall survival (OS). Most importantly, we observed that the best predictor of disease outcome is represented by the ratio of circulating miR-4488 vs. miR-579-3p (miRatio). Finally, the combination of the Lactate dehydrogenase (LDH) blood levels with the two circulating miRNAs alone or together did not produce any improvement in predicting PFS indicating that miR-579-3p and miR-4488 are independent predictors of PFS as compared to LDH. Conclusions: All together these data underscored the relevance of circulating miRNAs as suitable tools to predict therapy response in melanoma and maybe further developed as companion diagnostics in the clinic.


Assuntos
MicroRNA Circulante , Melanoma , MicroRNAs , Neoplasias Cutâneas , Humanos , Biomarcadores Tumorais/genética , MicroRNA Circulante/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
13.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584864

RESUMO

BACKGROUND: Immune checkpoint inhibitors are still unable to provide clinical benefit to the large majority of non-small cell lung cancer (NSCLC) patients. A deeper characterization of the tumor immune microenvironment (TIME) is expected to shed light on the mechanisms of cancer immune evasion and resistance to immunotherapy. Here, we exploited malignant pleural effusions (MPEs) from lung adenocarcinoma (LUAD) patients as a model system to decipher TIME in metastatic NSCLC. METHODS: Mononuclear cells from MPEs (PEMC) and peripheral blood (PBMC), cell free pleural fluid and/or plasma were collected from a total of 24 LUAD patients and 12 healthy donors. Bulk-RNA sequencing was performed on total RNA extracted from PEMC and matched PBMC. The DEseq2 Bioconductor package was used to perform differential expression analysis and CIBERSORTx for the regression-based immune deconvolution of bulk gene expression data. Cytokinome analysis of cell-free pleural fluid and plasma samples was performed using a 48-Plex Assay panel. THP-1 monocytic cells were used to assess macrophage polarization. Survival analyses on NSCLC patients were performed using KM Plotter (LUAD, N=672; lung squamous cell carcinoma, N=271). RESULTS: Transcriptomic analysis of immune cells and cytokinome analysis of soluble factors in the pleural fluid depicted MPEs as a metastatic niche in which all the components required for an effective antitumor response are present, but conscripted in a wound-healing, proinflammatory and tumor-supportive mode. The bioinformatic deconvolution analysis revealed an immune landscape dominated by myeloid subsets with the prevalence of monocytes, protumoral macrophages and activated mast cells. Focusing on macrophages we identified an MPEs-distinctive signature associated with worse clinical outcome in LUAD patients. CONCLUSIONS: Our study reports for the first time a wide characterization of MPEs LUAD microenvironment, highlighting the importance of specific components of the myeloid compartment and opens new perspectives for the rational design of new therapies for metastatic NSCLC.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Leucócitos Mononucleares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Macrófagos/patologia , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/patologia , Microambiente Tumoral
14.
FASEB J ; 24(11): 4291-301, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20566622

RESUMO

Thymosin ß4 (Tß4) is an actin-binding peptide overexpressed in several tumors, including colon carcinomas. The aim of this study was to investigate the role of Tß4 in promoting the tumorigenic properties of colorectal cancer stem cells (CR-CSCs), which are responsible for tumor initiation and growth. We first found that CR-CSCs from different patients have higher Tß4 levels than normal epithelial cells. Then, we used a lentiviral strategy to down-regulate Tß4 expression in CR-CSCs and analyzed the effects of such modulation on proliferation, survival, and tumorigenic activity of CR-CSCs. Empty vector-transduced CR-CSCs were used as a control. Targeting of the Tß4 produced CR-CSCs with a lower capacity to grow and migrate in culture and, interestingly, reduced tumor size and aggressiveness of CR-CSC-based xenografts in mice. Moreover, such loss in tumorigenic activity was accompanied by a significant increase of phosphatase and tensin homologue (PTEN) and a concomitant reduction of the integrin-linked kinase (ILK) expression, which resulted in a decreased activation of protein kinase B (Akt). Accordingly, exogenous expression of an active form of Akt rescued all the protumoral features lost after Tß4 targeting in CR-CSCs. In conclusion, Tß4 may have important implications for therapeutic intervention for treatment of human colon carcinoma.


Assuntos
Neoplasias do Colo/fisiopatologia , Células-Tronco Neoplásicas/citologia , Timosina/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Lentivirus/fisiologia , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/virologia , Proteína Oncogênica v-akt/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
15.
Virchows Arch ; 479(2): 233-246, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34255145

RESUMO

The term "biobanking" is often misapplied to any collection of human biological materials (biospecimens) regardless of requirements related to ethical and legal issues or the standardization of different processes involved in tissue collection. A proper definition of biobanks is large collections of biospecimens linked to relevant personal and health information (health records, family history, lifestyle, genetic information) that are held predominantly for use in health and medical research. In addition, the International Organization for Standardization, in illustrating the requirements for biobanking (ISO 20387:2018), stresses the concept of biobanks being legal entities driving the process of acquisition and storage together with some or all of the activities related to collection, preparation, preservation, testing, analysing and distributing defined biological material as well as related information and data. In this review article, we aim to discuss the basic principles of biobanking, spanning from definitions to classification systems, standardization processes and documents, sustainability and ethical and legal requirements. We also deal with emerging specimens that are currently being generated and shaping the so-called next-generation biobanking, and we provide pragmatic examples of cancer-associated biobanking by discussing the process behind the construction of a biobank and the infrastructures supporting the implementation of biobanking in scientific research.


Assuntos
Bancos de Espécimes Biológicos , Pesquisa Biomédica , Medicina de Precisão , Manejo de Espécimes , Acreditação , Bancos de Espécimes Biológicos/classificação , Bancos de Espécimes Biológicos/ética , Bancos de Espécimes Biológicos/legislação & jurisprudência , Bancos de Espécimes Biológicos/normas , Pesquisa Biomédica/classificação , Pesquisa Biomédica/ética , Pesquisa Biomédica/legislação & jurisprudência , Pesquisa Biomédica/normas , Guias como Assunto , Humanos , Formulação de Políticas , Medicina de Precisão/classificação , Medicina de Precisão/ética , Medicina de Precisão/normas , Manejo de Espécimes/classificação , Manejo de Espécimes/ética , Manejo de Espécimes/normas , Participação dos Interessados , Terminologia como Assunto
16.
Cancers (Basel) ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008342

RESUMO

The Identification of reliable Biomarkers able to predict the outcome after nephrectomy of patients with clear cell renal cell carcinoma (ccRCC) is an unmet need. The gene expression analysis in tumor tissues represents a promising tool for better stratification of ccRCC subtypes and patients' evaluation. METHODS: In our study we retrospectively analyzed using Next-Generation expression analysis (NanoString), the expression of a gene panel in tumor tissue from 46 consecutive patients treated with nephrectomy for non-metastatic ccRCC at two Italian Oncological Centres. Significant differences in expression levels of selected genes was sought. Additionally, we performed a univariate and a multivariate analysis on overall survival according to Cox regression model. RESULTS: A 17-gene expression signature of patients with a recurrence-free survival (RFS) < 1 year (unfavorable genomic signature (UGS)) and of patients with a RFS > 5 years (favorable genomic signature (FGS)) was identified and resulted in being significantly correlated with overall survival of the patients included in this analysis (HR 51.37, p < 0.0001). CONCLUSIONS: The identified Genomic Signatures may serve as potential biomarkers for prognosis prediction of non-metastatic RCC and could drive both follow-up and treatment personalization in RCC management.

17.
J Hematol Oncol ; 14(1): 119, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325728

RESUMO

In a population of 42 Philadelphia negative myeloproliferative neoplasm patients, all on systemic active treatment, the likelihood of responding to anti-SARS-CoV-2 BNT162b2 vaccine at 2 weeks after the second dose was significantly lower in the ten patients with myelofibrosis compared to the 32 with essential thrombocythemia (n = 17) and polycythemia vera (n = 15) grouped together, both in terms of neutralizing anti-SARS-CoV-2 IgG titers and seroprotection rates (32.47 AU/mL vs 217.97 AU/mL, p = 0.003 and 60% vs 93.8%, p = 0.021, respectively). Ruxolitinib, which was the ongoing treatment in five patients with myelofibrosis and three with polycythemia vera, may be implicated in reducing vaccine immunogenicity (p = 0.076), though large prospective study is needed to address this issue.


Assuntos
Anticorpos Antivirais/sangue , Tratamento Farmacológico da COVID-19 , Vacinas contra COVID-19/administração & dosagem , Policitemia Vera/imunologia , Mielofibrose Primária/imunologia , SARS-CoV-2/efeitos dos fármacos , Trombocitemia Essencial/imunologia , Idoso , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/complicações , COVID-19/virologia , Feminino , Humanos , Masculino , Policitemia Vera/patologia , Policitemia Vera/virologia , Mielofibrose Primária/patologia , Mielofibrose Primária/virologia , Prognóstico , Trombocitemia Essencial/patologia , Trombocitemia Essencial/virologia
18.
J Hematol Oncol ; 14(1): 81, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001183

RESUMO

BACKGROUND: Safety and immunogenicity of BNT162b2 mRNA vaccine are unknown in hematological patients; both were evaluated prospectively in 42 patients with multiple myeloma (MM) and 50 with myeloproliferative malignancies (MPM) (20 chronic myeloid leukemias and 30 myeloproliferative neoplasms), all of them on active anti-cancer treatment, in comparison with 36 elderly controls not suffering from cancer. Subjects serologically and/or molecularly (by nasal/throat swab) positives at basal for SARS-CoV-2 were excluded. Primary endpoint was to compare titers of neutralizing anti-SARS-CoV-2 IgG and seroprotection rates among the cohorts at 3 and 5 weeks from first dose. METHODS: Titration was done using LIAISON® SARS-CoV-2 S1/S2 IgG test, a quantitative chemiluminescent immunoassay approved by FDA on the basis of robust evidences of concordance (94.4%) between the test at cutoff of 15 AU/mL and the Plaque Reduction Neutralization Test 90% at 1:40 ratio. Cutoff of 15 AU/mL was assumed to discriminate responders to vaccination with a protective titer. Cohorts were compared using Fisher' exact test and the Mann-Whitney test as appropriated. Geometric mean concentrations (GMCs), geometric mean ratios and response rates after 1st and 2nd dose were compared in each cohort by Wilcoxon and McNemar tests, respectively. RESULTS: At 5 weeks, GMC of IgG in elderly controls was 353.3 AU/mL versus 106.7 in MM (p = 0.003) and 172.9 in MPM patients (p = 0.049). Seroprotection rate at cutoff of 15 AU/mL was 100% in controls compared to 78.6% in MM (p = 0.003) and 88% in MPM patients (p = 0.038). In terms of logarithm of IgG titer, in a generalized multivariate linear model, no gender effect was observed (p = 0.913), while there was a significant trend toward lower titers by increasing age (p < 0.001) and in disease cohorts with respect to controls (MM: p < 0.001 and MPM: p < 0.001). An ongoing treatment without daratumumab was associated with higher likelihood of response in MM patients (p = 0.003). No swabs resulted positive on each time point. No safety concerns were observed. CONCLUSIONS: BNT162b2 has demonstrated to be immunogenic at different extent among the cohorts. Response was 88% and robust in MPM patients. MM patients responded significantly less, particularly those on anti-CD38-based treatment. These latter patients should be advised to maintain masks and social distancing regardless of vaccination status, and their cohabiting family members need to be vaccinated in order to reduce the risk of contagion from the family. Additional boosters and titer monitoring could be considered. Trial registration Study was formally approved by the IRCCS Central Ethical Committee of Regione Lazio in January 2021 (Prot. N-1463/21).


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Mieloma Múltiplo/complicações , Transtornos Mieloproliferativos/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Vacina BNT162 , COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Transtornos Mieloproliferativos/imunologia , Dados Preliminares , Estudos Prospectivos , SARS-CoV-2/imunologia
19.
Cell Death Dis ; 12(11): 1019, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716309

RESUMO

Clinical outcomes of COVID-19 patients are worsened by the presence of co-morbidities, especially cancer leading to elevated mortality rates. SARS-CoV-2 infection is known to alter immune system homeostasis. Whether cancer patients developing COVID-19 present alterations of immune functions which might contribute to worse outcomes have so far been poorly investigated. We conducted a multi-omic analysis of immunological parameters in peripheral blood mononuclear cells (PBMCs) of COVID-19 patients with and without cancer. Healthy donors and SARS-CoV-2-negative cancer patients were also included as controls. At the infection peak, cytokine multiplex analysis of blood samples, cytometry by time of flight (CyTOF) cell population analyses, and Nanostring gene expression using Pancancer array on PBMCs were performed. We found that eight pro-inflammatory factors (IL-6, IL-8, IL-13, IL-1ra, MIP-1a, IP-10) out of 27 analyzed serum cytokines were modulated in COVID-19 patients irrespective of cancer status. Diverse subpopulations of T lymphocytes such as CD8+T, CD4+T central memory, Mucosal-associated invariant T (MAIT), natural killer (NK), and γδ T cells were reduced, while B plasmablasts were expanded in COVID-19 cancer patients. Our findings illustrate a repertoire of aberrant alterations of gene expression in circulating immune cells of COVID-19 cancer patients. A 19-gene expression signature of PBMCs is able to discriminate COVID-19 patients with and without solid cancers. Gene set enrichment analysis highlights an increased gene expression linked to Interferon α, γ, α/ß response and signaling which paired with aberrant cell cycle regulation in cancer patients. Ten out of the 19 genes, validated in a real-world consecutive cohort, were specific of COVID-19 cancer patients independently from different cancer types and stages of the diseases, and useful to stratify patients in a COVID-19 disease severity-manner. We also unveil a transcriptional network involving gene regulators of both inflammation response and proliferation in PBMCs of COVID-19 cancer patients.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Citocinas/sangue , Leucócitos Mononucleares/imunologia , Neoplasias/imunologia , COVID-19/patologia , Estudos de Casos e Controles , Feminino , Humanos , Leucócitos Mononucleares/citologia , Masculino , Neoplasias/patologia
20.
Vaccines (Basel) ; 9(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34696233

RESUMO

BACKGROUND: We present immunogenicity data 6 months after the first dose of BNT162b2 in correlation with age, gender, BMI, comorbidities and previous SARS-CoV-2 infection. METHODS: An immunogenicity evaluation was carried out among health care workers (HCW) vaccinated at the Istituti Fisioterapici Ospitalieri (IFO). All HCW were asked to be vaccine by the national vaccine campaign at the beginning of 2021. Serum samples were collected on day 1 just prior to the first dose of the vaccine and on day 21 just prior to the second vaccination dose. Thereafter sera samples were collected 28, 49, 84 and 168 days after the first dose of BNT162b2. Quantitative measurement of IgG antibodies against S1/S2 antigens of SARS-CoV-2 was performed with a commercial chemiluminescent immunoassay. RESULTS: Two hundred seventy-four HWCs were analyzed, 175 women (63.9%) and 99 men (36.1%). The maximum antibody geometric mean concentration (AbGMC) was reached at T2 (299.89 AU/mL; 95% CI: 263.53-339.52) with a significant increase compared to baseline (p < 0.0001). Thereafter, a progressive decrease was observed. At T5, a median decrease of 59.6% in COVID-19 negative, and of 67.8% in COVID-19 positive individuals were identified with respect to the highest antibody response. At T1, age and previous COVID-19 were associated with differences in antibody response, while at T2 and T3 differences in immune response were associated with age, gender and previous COVID-19. At T4 and T5, only COVID-19 positive participants demonstrated a greater antibody response, whereas no other variables seemed to influence antibody levels. CONCLUSIONS: Overall our study clearly shows antibody persistence at 6 months, albeit with a certain decline. Thus, the use of this vaccine in addressing the COVID-19 pandemic is supported by our results that in turn open debate about the need for further boosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA