RESUMO
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Assuntos
Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/terapia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Redes Reguladoras de Genes , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão GênicaRESUMO
Hemoglobinopathies are monogenic disorders affecting hemoglobin synthesis. Thalassemia and sickle cell disease (SCD) are considered the two major hemoglobinopathies. Thalassemia is a genetic disorder and one of the major hemoglobinopathies determined by an impairment of globin chain production, which causes an alteration of erythropoiesis, an improvement in hemolysis, and an alteration of iron homoeostasis. In SCD, the mutations are on the ß-globin chain of hemoglobin which results in a substitution of glutamic acid by valine with consequent formation of Hemoglobin S (HbS). Several factors are involved in bone metabolism alteration in patients with hemoglobinopathies, among them hormonal deficiency, bone marrow hyperplasia, iron overload, inflammation, and increased bone turnover. Bone metabolism is the result of balance maintenance between bone deposition and bone resorption, by osteoblasts (OBs) and osteoclasts (OCs). An impairment of this balance is responsible for the onset of bone diseases, such as osteoporosis (OP). Therefore, here we will discuss the alteration of bone metabolism in patients with hemoglobinopathies and the possible therapeutic strategies to contain and/or counteract bone health impairment in these patients, taking into consideration not only the pharmacological treatments already used in the clinical armamentarium, but also the new possible therapeutic strategies.
Assuntos
Anemia Falciforme , Hemoglobinopatias , Talassemia , Talassemia beta , Humanos , Densidade Óssea , Hemoglobinopatias/genética , Anemia Falciforme/genética , Hemoglobina Falciforme , Talassemia beta/genéticaRESUMO
Osteosarcoma (OS) is the most severe bone tumor in children. A chemotherapy regimen includes a combination of high-dose Methotrexate (MTX), doxorubicin, and cisplatin. These drugs cause acute and chronic side effects, such as infections, thrombocytopenia, neutropenia, DNA damage, and inflammation. Therefore, to identify new therapeutic strategies, effective and with a safety profile, is necessary. The Hedgehog (Hh) signaling pathway involved in tumorigenesis is active in OS. Hh components Patched receptor 1 (PTCH1), Smoothened (SMO), and glioma-associated oncogene homolog transcription factors (GLI1 and GLI2) are overexpressed in OS cell lines and patient samples. Curcumin (CUR)-with antioxidant and anti-cancer properties-downregulates Hh components in cancer, inhibiting progression. This study investigates CUR effects on the MG-63 OS cell line, alone and combined with MTX, to propose a novel therapeutic approach. Our study suggests CUR as a novel therapeutic agent in OS, particularly when combined with MTX. Targeting the Hh signaling pathway, CUR and MTX showed significant pro-apoptotic effects, increasing the BAX/Bcl-2 ratio and total apoptotic cell percentage. They reduced the expression of Hh pathway components (PTCH1, SMO, GLI1, and GLI2), inhibiting OS cell proliferation, survival, and invasion. CUR and MTX combined determined a ß-Catenin decrease and a trend toward reducing NF-kB and matrix metalloproteinases (MMP-2 and MMP-9). Our findings suggest CUR as a support to OS treatment, improving outcomes and reducing the adverse effects of current therapies.
Assuntos
Apoptose , Curcumina , Proteínas Hedgehog , Metotrexato , Osteossarcoma , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Metotrexato/farmacologia , Proteínas Hedgehog/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Curcumina/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Receptor Smoothened/metabolismo , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proliferação de Células/efeitos dos fármacos , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , beta Catenina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Proteínas NuclearesRESUMO
Duchenne Muscular Dystrophy (DMD) is a very severe X-linked dystrophinopathy. It is due to a mutation in the DMD gene and causes muscular degeneration in conjunction with several secondary co-morbidities, such cardiomyopathy and respiratory failure. DMD is characterized by a chronic inflammatory state, and corticosteroids represent the main therapy for these patients. To contradict drug-related side effects, there is need for novel and more safe therapeutic strategies. Macrophages are immune cells stringently involved in both physiological and pathological inflammatory processes. They express the CB2 receptor, one of the main elements of the endocannabinoid system, and have been proposed as an anti-inflammatory target in several inflammatory and immune diseases. We observed a lower expression of the CB2 receptor in DMD-associated macrophages, hypothesizing its involvement in the pathogenesis of this pathology. Therefore, we analyzed the effect of JWH-133, a CB2 receptor selective agonist, on DMD-associated primary macrophages. Our study describes the beneficial effect of JWH-133 in counteracting inflammation by inhibiting pro-inflammatory cytokines release and by directing macrophages' phenotype toward the M2 anti-inflammatory one.
Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Humanos , Anti-Inflamatórios , Cardiomiopatias/complicações , Inflamação/metabolismo , Distrofia Muscular de Duchenne/genética , Receptor CB2 de CanabinoideRESUMO
Immune thrombocytopenia (ITP) is an autoimmune disease caused by platelet destruction mediated by auto-antibody production. It is characterized by a compromised immune system and alteration of the inflammatory response. Mesenchymal stromal cells (MSCs) play an important role in modulating immune and inflammatory processes, exerting immune-suppressing and anti-inflammatory properties. In ITP-MSCs the activity and survival are strongly impaired. Eltrombopag (ELT) is a thrombopoietin receptor agonist approved in chronic ITP for stimulating platelet production. It has immunomodulating properties by stimulating T and B regulatory cell activity and by promoting a macrophage switch from the pro-inflammatory to the anti-inflammatory phenotype. ELT also exhibits iron-chelating properties. Iron is a crucial element involved in several physiologic processes, but its intracellular accumulation determines cell damages. Therefore, for the first time we analysed the effect of ELT on ITP-MSCs demonstrating its ability to restore survival and activity of MSCs directly and to promote their survival and proliferation indirectly, by iron metabolism modulation.
Assuntos
Células-Tronco Mesenquimais , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Anti-Inflamatórios/uso terapêutico , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Criança , Humanos , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Ferro/uso terapêutico , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Pirazóis , Trombocitopenia/tratamento farmacológicoRESUMO
Iron is a crucial element for mammalian cells, considering its intervention in several physiologic processes. Its homeostasis is finely regulated, and its alteration could be responsible for the onset of several disorders. Iron is closely related to inflammation; indeed, during inflammation high levels of interleukin-6 cause an increased production of hepcidin which induces a degradation of ferroportin. Ferroportin degradation leads to decreased iron efflux that culminates in elevated intracellular iron concentration and consequently iron toxicity in cells and tissues. Therefore, iron chelation could be considered a novel and useful therapeutic strategy in order to counteract the inflammation in several autoimmune and inflammatory diseases. Several iron chelators are already known to have anti-inflammatory effects, among them deferiprone, deferoxamine, deferasirox, and Dp44mT are noteworthy. Recently, eltrombopag has been reported to have an important role in reducing inflammation, acting both directly by chelating iron, and indirectly by modulating iron efflux. This review offers an overview of the possible novel biological effects of the iron chelators in inflammation, suggesting them as novel anti-inflammatory molecules.
Assuntos
Sobrecarga de Ferro , Animais , Benzoatos/uso terapêutico , Deferasirox/uso terapêutico , Deferiprona , Desferroxamina/uso terapêutico , Inflamação/complicações , Inflamação/tratamento farmacológico , Ferro/uso terapêutico , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Mamíferos , Piridonas/uso terapêuticoRESUMO
Acute lymphoblastic leukemia type B (B-ALL) is the most common kind of pediatric leukemia, characterized by the clonal proliferation of type B lymphoid stem cells. Important progress in ALL treatments led to improvements in long-term survival; nevertheless, many adverse long-term consequences still concern the medical community. Molecular and cellular target therapies, together with immunotherapy, are promising strategies to overcome these concerns. Cannabinoids, enzymes involved in their metabolism, and cannabinoid receptors type 1 (CB1) and type 2 (CB2) constitute the endocannabinoid system, involved in inflammation, immune response, and cancer. CB2 receptor stimulation exerts anti-proliferative and anti-invasive effects in many tumors. In this study, we evaluated the effects of CB2 stimulation on B-ALL cell lines, SUP-B15, by RNA sequencing, Western blotting, and ELISA. We observe a lower expression of CB2 in SUP-B15 cells compared to lymphocytes from healthy subjects, hypothesizing its involvement in B-ALL pathogenesis. CB2 stimulation reduces the expression of CD9, SEC61G, TBX21, and TMSB4X genes involved in tumor growth and progression, and also negatively affects downstream intracellular pathways. Our findings suggest an antitumor role of CB2 stimulation in B-ALL, and highlight a functional correlation between CB2 receptors and specific anti-tumoral pathways, even though further investigations are needed.
Assuntos
Linfoma de Burkitt , Canabinoides , Leucemia-Linfoma Linfoblástico de Células Precursoras , Western Blotting , Canabinoides/farmacologia , Criança , Expressão Gênica , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Canais de Translocação SEC/metabolismoRESUMO
The role of the endocannabinoid/endovanilloid (EC/EV) system in bone metabolism has recently received attention. Current literature evidences the modulation of osteoclasts and osteoblasts through the activation or inhibition of cannabinoid receptors in various pathological conditions with secondary involvement of bone tissue. However, this role is still unclear in primary bone diseases. Paget's disease of the bone (PDB) could be considered a disease model for analyzing the role of the EC/EV system on osteoclasts (OCs), speculating the potential use of specific agents targeting this system for managing metabolic bone disorders. The aim of the study is to analyze OCs expression of EC/EV system in patients with PDB and to compare OCs activity between this population and healthy people. Finally, we investigate whether specific agents targeting EC/EV systems are able to modulate OCs activity in this metabolic bone disorder. We found a significant increase in cannabinoid receptor type 2 (CB2) protein expression in patients with PDB, compared to healthy controls. Moreover, we found a significant reduction in multi-nucleated tartrate-resistant acid phosphatase (TRAP)-positive OCs and resorption areas after treatment with JWH-133. CB2 could be a molecular target for reducing the activity of OCs in PDB, opening new therapeutic scenarios for the management of this condition.
Assuntos
Doenças Ósseas/metabolismo , Endocanabinoides/metabolismo , Osteíte Deformante/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , Humanos , Fosfatase Ácida Resistente a Tartarato/metabolismoRESUMO
OBJECTIVES: In this study, we investigated the role of the cannabinoid receptor type 2 (CB2) in the bone loss associated with celiac disease (CD) evaluating the effect of its pharmacological modulation on osteoclast activity. We previously demonstrated a significant association between the CB2 Q63R variant and CD, suggesting it as a possible disease biomarker. Moreover, CB2 stimulation is beneficial for reducing osteoclast activity in several bone pathologic conditions. METHODS: In vitro osteoclasts (OCs) were differentiated from peripheral blood mononuclear cells of healthy donors, CD children at diagnosis and after 1 year of gluten-free diet (GFD) and characterized by real-time PCR and western blot for the expression of CB2 and specific osteoclastic markers, TRAP and Cathepsin K. TRAP assay and Bone Resorption assay were performed to evaluate osteoclast activity before and after 48âh exposure to CB2 selective drugs (JWH-133 and AM630) and Vitamin D. RESULTS: We found in CD patients an osteoclast hyperactivation and low levels of CB2. CB2 stimulation with JWH-133 agonist is more effective than Vitamin D in reducing osteoclast activity whereas CB2 blockade with AM630 increases osteoclast activation. The anti-osteoporotic effect of JWH-133 decreases when used in co-treatment with vitamin D. GFD reduces osteoclast activity without restore CB2 expression. CONCLUSIONS: CB2 could be a molecular marker to predict the risk of bone alterations in CD and a pharmacological target to reduce bone mass loss in patients who need a direct intervention on bone metabolism, in addition to the GFD.
Assuntos
Reabsorção Óssea , Doença Celíaca , Receptor CB2 de Canabinoide , Reabsorção Óssea/etiologia , Doença Celíaca/complicações , Criança , Humanos , Leucócitos Mononucleares , OsteoclastosRESUMO
In late December 2019, a novel coronavirus (SARS-CoV-2 or CoV-19) appeared in Wuhan, China, causing a global pandemic. SARS-CoV-2 causes mild to severe respiratory tract inflammation, often developing into lung fibrosis with thrombosis in pulmonary small vessels and causing even death. COronaVIrus Disease (COVID-19) patients manifest exacerbated inflammatory and immune responses, cytokine storm, prevalence of pro-inflammatory M1 macrophages and increased levels of resident and circulating immune cells. Men show higher susceptibility to SARS-CoV-2 infection than women, likely due to estrogens production. The protective role of estrogens, as well as an immune-suppressive activity that limits the excessive inflammation, can be mediated by cannabinoid receptor type 2 (CB2). The role of this receptor in modulating inflammation and immune response is well documented in fact in several settings. The stimulation of CB2 receptors is known to limit the release of pro-inflammatory cytokines, shift the macrophage phenotype towards the anti-inflammatory M2 type and enhance the immune-modulating properties of mesenchymal stromal cells. For these reasons, we hypothesize that CB2 receptor can be a therapeutic target in COVID-19 pandemic emergency.
Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Receptor CB2 de Canabinoide/metabolismo , Animais , COVID-19 , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Estrogênios/química , Estrogênios/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/virologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/virologia , Pandemias , Pneumonia Viral/virologia , Receptor CB2 de Canabinoide/antagonistas & inibidores , SARS-CoV-2RESUMO
The authors wish to make the following corrections to this paper [...].
RESUMO
Immune Thrombocytopenia (ITP) is an autoimmune disease characterized by autoantibodies-mediated platelet destruction, a prevalence of M1 pro-inflammatory macrophage phenotype and an elevated T helper 1 and T helper 2 lymphocytes (Th1/Th2) ratio, resulting in impairment of inflammatory profile and immune response. Macrophages are immune cells, present as pro-inflammatory classically activated macrophages (M1) or as anti-inflammatory alternatively activated macrophages (M2). They have a key role in ITP, acting both as effector cells, phagocytizing platelets, and, as antigen presenting cells, stimulating auto-antibodies against platelets production. Eltrombopag (ELT) is a thrombopoietin receptor agonist licensed for chronic ITP to stimulate platelet production. Moreover, it improves T and B regulatory cells functions, suppresses T-cells activity, and inhibits monocytes activation. We analyzed the effect of ELT on macrophage phenotype polarization, proposing a new possible mechanism of action. We suggest it as a mediator of macrophage phenotype switch from the M1 pro-inflammatory type to the M2 anti-inflammatory one in paediatric patients with ITP, in order to reduce inflammatory state and restore the immune system function. Our results provide new insights into the therapy and the management of ITP, suggesting ELT also as immune-modulating drug.
Assuntos
Benzoatos/farmacologia , Hidrazinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Púrpura Trombocitopênica Idiopática/imunologia , Pirazóis/farmacologia , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/patologia , Criança , Pré-Escolar , Feminino , Humanos , Macrófagos/patologia , Masculino , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th1/imunologia , Células Th1/patologia , Células Th2/imunologia , Células Th2/patologiaRESUMO
Endocannabinoid system consists of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors, their endogenous ligands, and the enzymes responsible for their synthesis and degradation. CB2, to a great extent, and CB1, to a lesser extent, are involved in regulating the immune response. They also regulate the inflammatory processes by inhibiting pro-inflammatory mediator release and immune cell proliferation. This review provides an overview on the role of the endocannabinoid system with a major focus on cannabinoid receptors in the pathogenesis and onset of inflammatory and autoimmune pediatric diseases, such as immune thrombocytopenia, juvenile idiopathic arthritis, inflammatory bowel disease, celiac disease, obesity, neuroinflammatory diseases, and type 1 diabetes mellitus. These disorders have a high social impact and represent a burden for the healthcare system, hence the importance of individuating more innovative and effective treatments. The endocannabinoid system could address this need, representing a possible new diagnostic marker and therapeutic target.
Assuntos
Endocanabinoides/metabolismo , Doenças do Sistema Imunitário/metabolismo , Inflamação/metabolismo , Animais , Humanos , Receptor CB2 de Canabinoide/metabolismoRESUMO
Bone is a dynamic tissue, whose homeostasis is maintained by a fine balance between osteoclast (OC) and osteoblast (OB) activity. The endocannabinoid/endovanilloid (EC/EV) system's receptors are the cannabinoid receptor type 1 (CB1), the cannabinoid receptor type 2 (CB2), and the transient receptor potential cation channel subfamily V member 1 (TRPV1). Their stimulation modulates bone formation and bone resorption. Bone diseases are very common worldwide. Osteoporosis is the principal cause of bone loss and it can be caused by several factors such as postmenopausal estrogen decrease, glucocorticoid (GC) treatments, iron overload, and chemotherapies. Studies have demonstrated that CB1 and TRPV1 stimulation exerts osteoclastogenic effects, whereas CB2 stimulation has an anti-osteoclastogenic role. Moreover, the EC/EV system has been demonstrated to have a role in cancer, favoring apoptosis and inhibiting cell proliferation. In particular, in bone cancer, the modulation of the EC/EV system not only reduces cell growth and enhances apoptosis but it also reduces cell invasion and bone pain in mouse models. Therefore, EC/EV receptors may be a useful pharmacological target in the prevention and treatment of bone diseases. More studies to better investigate the biochemical mechanisms underlining the EC/EV system effects in bone are needed, but the synthesis of hybrid molecules, targeting these receptors and capable of oppositely regulating bone homeostasis, seems to be a promising and encouraging prospective in bone disease management.
Assuntos
Endocanabinoides/genética , Osteogênese/genética , Osteoporose/genética , Osteossarcoma/genética , Apoptose/genética , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Proliferação de Células/genética , Endocanabinoides/metabolismo , Glucocorticoides/genética , Humanos , Osteoporose/patologia , Osteossarcoma/patologia , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Canais de Cátion TRPV/genéticaRESUMO
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by antibody-mediated platelet destruction, with a complex and unclear pathogenesis. The impaired immunosuppressive capacity of mesenchymal stromal cells in ITP patients (ITP-MSCs) might play a role in the development of the disease. Correcting the MSC defects could represent an alternative therapeutic approach for ITP. High-dose dexamethasone (HD-Dexa) is the mainstay of the ITP therapeutic regimen, although it has several side effects. We previously demonstrated a role for cannabinoid receptor 2 (CB2) as a mediator of anti-inflammatory and immunoregulatory properties of human MSCs. We analyzed the effects of CB2 stimulation, with the selective agonist JWH-133, and of Dexa alone and in combination on ITP-MSC survival and immunosuppressive capacity. We provided new insights into the pathogenesis of ITP, suggesting CB2 receptor involvement in the impairment of ITP-MSC function and confirming MSCs as responsive cellular targets of Dexa. Moreover, we demonstrated that CB2 stimulation and Dexa attenuate apoptosis, via Bcl2 signaling, and restore the immune-modulatory properties of MSCs derived from ITP patients. These data suggest the possibility of using Dexa in combination with JWH-133 in ITP, reducing its dose and side effects but maintaining its therapeutic benefits.
Assuntos
Anti-Inflamatórios/farmacologia , Canabinoides/farmacologia , Dexametasona/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Púrpura Trombocitopênica Idiopática/imunologia , Receptor CB2 de Canabinoide/agonistas , Apoptose , Células Cultivadas , Criança , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/imunologiaRESUMO
Osteosarcoma is the most common primary malignant tumor of bone in children and adolescents. Bortezomib (BTZ) is an approved anticancer drug, classified as a selective reversible inhibitor of the ubiquitin-dependent proteasome system, that leads to cancer cell cycle arrest and apoptosis reducing the invasion ability of Osteosarcoma cells in vitro. It also regulates the RANK/RANKL/OPG system, involved in the pathogenesis of bone tumors and in cell migration. A side effect of BTZ is to induce painful sensory peripheral neuropathy which lead to cessation of therapy or dose reduction. Recently BTZ has been evaluated in combination with Cannabinoids targeting CB1 receptor, demonstrating a promising synergic effect. The Endocannabinoid/Endovanilloid (EC/EV) system includes two G protein-coupled receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel and their endogenous ligands and enzymes. CB1 and CB2 are expressed mainly in Central Nervous System and Immune Peripheral cells respectively. TRPV1 is also expressed in primary sensory neurons and is involved in pain modulation. EC/EV system induces apoptosis, reduces invasion and cell proliferation in Osteosarcoma cell lines and is involved in bone metabolism. We analyzed the effects of BTZ, alone and in combination with selective agonists at CB2 (JWH-133) and TRPV1 (RTX) receptors, in the Osteosarcoma cell line (HOS) on Apoptosis, Cell Cycle progression, migration and bone balance. We observed that the stimulation of CB2 and TRPV1 receptors increase the efficacy of BTZ in inducing apoptosis and reducing invasion, cell cycle progression and by modulating bone balance. These data suggest the possibility to use BTZ, in combination with EC/EV agonists, in Osteosarcoma therapy reducing its dose and its side effects.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Bortezomib/farmacologia , Canabinoides/farmacologia , Diterpenos/farmacologia , Osteossarcoma/tratamento farmacológico , Receptor CB2 de Canabinoide/agonistas , Canais de Cátion TRPV/agonistas , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Osteossarcoma/metabolismoRESUMO
The advancement of anti-cancer therapies has markedly improved the survival rate of children with cancer, making them long-term childhood cancer survivors (CCS). Nevertheless, these treatments cause a low-grade inflammatory state, determining inflamm-aging and, thus, favoring the early onset of chronic diseases normally associated with old age. Identification of novel and safer therapeutic strategies is needed to counteract and prevent inflamm-aging. Macrophages are cells involved in immune and inflammatory responses, with a pivotal role in iron metabolism, which is related to inflammation. We obtained macrophages from CCS patients and evaluated their phenotype markers, inflammatory states, and iron metabolism by Western blotting, ELISA, and iron assays. We observed a strong increase in classically activated phenotype markers (M1) and iron metabolism alteration in CCS, with an increase in intracellular iron concentration and inflammatory markers. These results suggest that the prevalence of M1 macrophages and alteration of iron metabolism could be involved in the worsening of inflammation in CCS. Therefore, we propose macrophages and iron metabolism as novel therapeutic targets to counteract inflamm-aging. To avoid toxic regimens, we tested some nutraceuticals (resveratrol, curcumin, and oil-enriched lycopene), which are already known to exert anti-inflammatory properties. After their administration, we observed a macrophage switch towards the anti-inflammatory phenotype M2, as well as reductions in pro-inflammatory cytokines and the intracellular iron concentration. Therefore, we suggest-for the first time-that nutraceuticals reduce inflammation in CCS macrophages through a novel anti-inflammatory mechanism of action, modulating iron metabolism.
RESUMO
The collection of papers in this Special Issue entitled "Frailty in Pediatric and Young Adult Cancer Survivors: from bench to bedside" includes six interesting articles (five reviews and one single-center retrospective longitudinal cohort study) presented by expert researchers in the fields of oncology and pediatrics [...].
RESUMO
The main purpose of this study is to provide experimental data on the complex permittivity of some biological solutions in the 2-67 GHz range at room and human body temperatures. The permittivity measurements are performed using an open-ended coaxial probe. Permittivity spectra of several representative monomolecular solutions of proteins, amino acids, nucleic acids, and carbohydrates are analyzed and compared. Furthermore, measurements have also been performed for complex biomolecular solutions, including bovine serum albumin (BSA)-DNA-glucose mixture, culture medium, and yeast extract solution. The results demonstrate that for concentrations below 1%, the permittivity spectra of the solutions do not substantially differ from that of distilled water. Measurements carried out for 4% and 20% BSA solutions show that the presence of proteins results in a decrease in permittivity. For highly concentrated RNA solutions (3%), a slight increase in the imaginary part of the permittivity is observed below 10 GHz. Experimental data show that free water permittivity can be used for modeling of the culture medium above 10 GHz. However, at lower frequencies a substantial increase in the imaginary part of the permittivity due to ionic conductivity should be carefully taken into account. A similar increase has also been observed for the yeast extract solution in the lower frequency region of the considered spectrum. Above 10 GHz, the high concentration of proteins and other low-permittivity components of the yeast extract solution results in a decrease in the complex permittivity compared to that of water. Obtained data are of utmost importance for millimeter-wave dosimetry studies.
Assuntos
Ondas de Rádio/efeitos adversos , Soluções , Animais , Candida/citologia , Candida/efeitos da radiação , Bovinos , Meios de Cultura/química , DNA/química , Glucose/química , Humanos , Reprodutibilidade dos Testes , Soroalbumina Bovina/química , TemperaturaRESUMO
Celiac Disease (CD) represents an autoimmune disorder triggered by the exposure to gluten in genetically susceptible individuals. Recent studies suggest the involvement of macrophages in CD pathogenesis. Macrophages are immune cells, present as pro-inflammatory classically activated macrophages (M1) or as anti-inflammatory alternatively activated macrophages (M2). The Cannabinoid Receptor 2 (CB2) has important anti-inflammatory and immunoregulatory properties. We previously demonstrated that a common CB2 functional variant, Q63R, causing CB2 reduced function, is associated with several inflammatory and autoimmune diseases The first aim of this study was to investigate the phenotype of macrophages isolated from peripheral blood of CD patients and CB2 expression. The second aim was to evaluate the effects of CB2 pharmacological modulation on CD macrophage polarization. Moreover, by an in vitro model of "immunocompetent gut" we investigated the role of CD macrophages in inducing intestinal barrier damage and the possibility to restore its functionality modulating their polarization. We found an increased expression of M1 macrophages and a CB2 reduced expression. We also demonstrated CD M1 macrophages in inducing the typical mucosal barrier damage of CD. CB2 stimulation switches macrophage polarization towards the anti-inflammatory M2 phenotype thus reducing inflammation but also limiting the epithelial dysfunction. Therefore, we suggest CB2 receptor as a possible novel therapeutic target for CD by regulating macrophages polarization and by preventing mucosal barrier damage.