Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Brain Behav Immun ; 90: 81-96, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32755645

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative motor disorder. The mechanisms underlying the onset and progression of Levodopa (L-Dopa)-induced dyskinesia (LID) during PD treatment remain elusive. Emerging evidence implicates functional modification of microglia in the development of LID. Thus, understanding the link between microglia and the development of LID may provide the knowledge required to preserve or promote beneficial microglial functions, even during a prolonged L-Dopa treatment. To provide novel insights into microglial functional alterations in PD pathophysiology, we characterized their density, morphology, ultrastructure, and degradation activity in the sensorimotor functional territory of the putamen, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) cynomolgus monkeys. A subset of MPTP monkeys was treated orally with L-Dopa and developed LID similar to PD patients. Using a combination of light, confocal and transmission electron microscopy, our quantitative analyses revealed alterations of microglial density, morphology and phagolysosomal activity following MPTP intoxication that were partially normalized with L-Dopa treatment. In particular, microglial density, cell body and arborization areas were increased in the MPTP monkeys, whereas L-Dopa-treated MPTP animals presented a microglial phenotype similar to the control animals. At the ultrastructural level, microglia did not differ between groups in their markers of cellular stress or aging. Nevertheless, microglia from the MPTP monkeys displayed reduced numbers of endosomes, compared with control animals, that remained lower after L-Dopa treatment. Microglia from MPTP monkeys treated with L-Dopa also had increased numbers of primary lysosomes compared with non-treated MPTP animals, while secondary and tertiary lysosomes remained unchanged. Moreover, a decrease microglial immunoreactivity for CD68, considered a marker of phagocytosis and lysosomal activity, was measured in the MPTP monkeys treated with L-Dopa, compared with non-treated MPTP animals. Taken together, these findings revealed significant changes in microglia during PD pathophysiology that were partially rescued by L-Dopa treatment. Albeit, this L-Dopa treatment conferred phagolysosomal insufficiency on microglia in the dyskinetic Parkinsonian monkeys.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Discinesia Induzida por Medicamentos/tratamento farmacológico , Humanos , Levodopa , Macaca fascicularis , Microglia , Doença de Parkinson/tratamento farmacológico
2.
Mov Disord ; 33(10): 1619-1631, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216534

RESUMO

BACKGROUND: Levodopa remains the gold-standard treatment for PD. However, it becomes less effective as the disease progresses and produces debilitating side effects, such as motor fluctuations and l-dopa-induced dyskinesia. Modulation of metabotropic glutamate receptor 4 represents a promising antiparkinsonian approach in combination with l-dopa, but it has not been demonstrated in primates. OBJECTIVE: We studied whether a novel positive allosteric modulator of the metabotropic glutamate receptor 4, PXT002331 (foliglurax), could reduce parkinsonism in primate models. METHODS: We assessed the therapeutic potential of PXT002331 in three models of MPTP-induced parkinsonism in macaques. These models represent three different stages of disease evolution: early stage and advanced stage with and without l-dopa-induced dyskinesia. RESULTS: As an adjunct to l-dopa, PXT002331 induced a robust and dose-dependent reversal of parkinsonian motor symptoms in macaques, including bradykinesia, tremor, posture, and mobility. Moreover, PXT002331 strongly decreased dyskinesia severity, thus having therapeutic efficacy on both parkinsonian motor impairment and l-dopa-induced dyskinesia. PXT002331 brain penetration was also assessed using PET imaging in macaques, and pharmacodynamic analyses support target engagement in the therapeutic effects of PXT002331. CONCLUSIONS: This work provides a demonstration that a positive allosteric modulator of metabotropic glutamate receptor 4 can alleviate the motor symptoms of PD and the motor complications induced by l-dopa in primates. PXT002331 is the first compound of its class to enter phase IIa clinical trials. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/uso terapêutico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Antiparkinsonianos/química , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/etiologia , Antagonistas de Aminoácidos Excitatórios/química , Levodopa/efeitos adversos , Macaca fascicularis , Transtornos Parkinsonianos/complicações , Tomografia por Emissão de Pósitrons , Receptores de Glutamato Metabotrópico/química , Fatores de Tempo
3.
J Neural Transm (Vienna) ; 125(3): 291-324, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28391443

RESUMO

Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.


Assuntos
Doença de Parkinson Secundária/terapia , Doença de Parkinson/terapia , Animais , Antiparkinsonianos/uso terapêutico , Modelos Animais de Doenças , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson Secundária/tratamento farmacológico
4.
Neurobiol Dis ; 95: 46-53, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27388937

RESUMO

The most abundant interneurons in the primate striatum are those expressing the calcium-binding protein calretinin (CR). The present immunohistochemical study provides detailed assessments of their morphological traits, number, and topographical distribution in normal monkeys (Macaca fascicularis) and in monkeys rendered parkinsonian (PD) by MPTP intoxication. In primates, the CR+ striatal interneurons comprise small (8-12µm), medium (12-20µm) and large-sized (20-45µm) neurons, each with distinctive morphologies. The small CR+ neurons were 2-3 times more abundant than the medium-sized CR+ neurons, which were 20-40 times more numerous than the large CR+ neurons. In normal and PD monkeys, the density of small and medium-sized CR+ neurons was twice as high in the caudate nucleus than in the putamen, whereas the inverse occurred for the large CR+ neurons. Double immunostaining experiments revealed that only the large-sized CR+ neurons expressed choline acetyltransferase (ChAT). The number of large CR+ neurons was found to increase markedly (4-12 times) along the entire anteroposterior extent of both the caudate nucleus and putamen of PD monkeys compared to controls. Comparison of the number of large CR-/ChAT+ and CR+/ChAT+ neurons together with experiments involving the use of bromo-deoxyuridine (BrdU) as a marker of newly generated cells showed that it is the expression of CR by the large ChAT+ striatal interneurons, and not their absolute number, that is increased in the dopamine-depleted striatum. These findings reveal the modulatory role of dopamine in the phenotypic expression of the large cholinergic striatal neurons, which are known to play a crucial role in PD pathophysiology.


Assuntos
Calbindina 2/metabolismo , Corpo Estriado/metabolismo , Interneurônios/metabolismo , Doença de Parkinson/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Dopamina/metabolismo , Feminino , Macaca fascicularis , Neurônios/metabolismo
5.
Mov Disord ; 31(7): 1049-54, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990766

RESUMO

BACKGROUND: This phase 2 randomized, double-blind, placebo-controlled study evaluated the efficacy and safety of the nicotinic acetylcholine receptor α7 agonist AQW051 in patients with Parkinson's disease and levodopa-induced dyskinesia. METHODS: Patients with idiopathic Parkinson's disease and moderate to severe levodopa-induced dyskinesia were randomized to AQW051 10 mg (n = 24), AQW051 50 mg (n = 24), or placebo (n = 23) once daily for 28 days. Coprimary end points were change in Modified Abnormal Involuntary Movement Scale and Unified Parkinson's Disease Rating Scale part III scores. Secondary outcomes included pharmacokinetics. RESULTS: In total, 67 patients completed the study. AQW051-treated patients experienced no significant improvements in Modified Abnormal Involuntary Movement Scale or Unified Parkinson's Disease Rating Scale part III scores by day 28. AQW051 was well tolerated; the most common adverse events were dyskinesia, fatigue, nausea, and falls. CONCLUSIONS: AQW051 did not significantly reduce dyskinesia or parkinsonian severity. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/farmacologia , Compostos Azabicíclicos/farmacologia , Dopaminérgicos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Avaliação de Resultados em Cuidados de Saúde , Doença de Parkinson/tratamento farmacológico , Piridinas/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Idoso , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/efeitos adversos , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/efeitos adversos , Método Duplo-Cego , Discinesia Induzida por Medicamentos/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piridinas/administração & dosagem , Piridinas/efeitos adversos
6.
Neuroendocrinology ; 103(3-4): 300-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26227546

RESUMO

BACKGROUND: Numerous studies have reported on the neuroprotective activity of estradiol, whereas the effect of the other ovarian steroid, progesterone, is much less documented. METHODS: This study sought to investigate neuroprotection with a low dose of progesterone (1 µg) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated male mice to model Parkinson's disease and compare it to the effect of this steroid in intact mice (experiment 1). We also investigated if high doses of progesterone could protect dopaminergic neurons already exposed to MPTP (experiment 2). We measured progesterone effects on various dopaminergic markers [dopamine and its metabolites, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2)] and on neuroactive steroids in both plasma and the brain. RESULTS: For experiment 1, our results showed that progesterone completely prevented the effect of MPTP toxicity on dopamine concentrations, on the increase in the 3-methoxytyramine/dopamine ratio, as well as on VMAT2-specific binding in the striatum and the substantia nigra. Progesterone decreased MPTP effects on 3,4-dihydroxyphenylacetic acid concentrations and DAT-specific binding in the lateral part of the anterior striatum and in the middle striatum (medial and lateral parts). Progesterone treatment of intact mice had no effect on the markers investigated. For experiment 2, measures of dopaminergic markers in the striatum showed that 8 mg/kg of progesterone was the most effective dose to reduce MPTP effects, and more limited effects were observed with 16 mg/kg. We found that progesterone treatment increases the levels of brain progesterone itself as well as of its metabolites. CONCLUSION: Our result showed that progesterone has neuroprotective effects on dopaminergic neurons in MPTP-treated male mice.


Assuntos
Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Progesterona/uso terapêutico , Androstano-3,17-diol/análogos & derivados , Androstano-3,17-diol/sangue , Animais , Autorradiografia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Radioisótopos de Carbono/farmacocinética , Cocaína/análogos & derivados , Cocaína/farmacocinética , Di-Hidrotestosterona/sangue , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Esquema de Medicação , Intoxicação por MPTP/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Progesterona/sangue , Testosterona/sangue , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
7.
Neurobiol Dis ; 82: 99-113, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26051538

RESUMO

Lewy pathology affects the gastrointestinal tract in Parkinson's disease (PD) and recent reports suggest a link between the disorder and gut inflammation. In this study, we investigated enteric neuroprotection and macrophage immunomodulation by 17ß-estradiol (E2) and the G protein-coupled estrogen receptor 1 (GPER1) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse PD model. We found that both E2 and the GPER1 agonist G1 are protective against the loss of dopamine myenteric neurons and inhibited enteric macrophage infiltration in MPTP-treated mice. Coadministration of GPER1 antagonist G15, while completely blocking the neuroprotective and anti-inflammatory effects of G1 also partially prevented those of E2. Interestingly, we found that E2 and G1 treatments could directly alter MPTP-mediated immune responses independently from neurodegenerative processes. Analyses of monocyte/macrophage NF-κB and iNOS activation and FACs immunophenotype indicated that 1-methyl-4-phenylpyridinium (MPP(+)) treatment induces a strong immune response in monocytes, comparable to that of canonical challenge by lipopolysaccharide. In these cells, G1 and E2 treatment are equally potent in promoting a shift toward an anti-inflammatory "M2" immunophenotype reducing MPP(+)-induced NF-κB and iNOS activation. Moreover, G15 also antagonized the immunomodulatory effects of G1 in MPP(+)-treated macrophages. Together these data provide the first evidence for the role of GPER1 in enteric immunomodulation and neuroprotection. Considering increasing recognition for myenteric pathology as an early biomarker for PD, these findings provide a valuable contribution for better understanding and targeting of future therapeutic strategies.


Assuntos
Imunomodulação/genética , Plexo Mientérico/metabolismo , Neuroproteção/genética , Transtornos Parkinsonianos/metabolismo , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Animais , Benzodioxóis/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Estradiol/farmacologia , Estradiol/uso terapêutico , Imunomodulação/efeitos dos fármacos , Camundongos , Plexo Mientérico/efeitos dos fármacos , Plexo Mientérico/imunologia , Plexo Mientérico/patologia , NF-kappa B/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/patologia , Quinolinas/farmacologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Neurosci Biobehav Rev ; 156: 105479, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007170

RESUMO

The greater prevalence and incidence of Parkinson's disease (PD) in men suggest a beneficial effect of sex hormones. Neuroactive steroids have neuroprotective activities thus offering interesting option for disease-modifying therapy for PD. Neuroactive steroids are also neuromodulators of neurotransmitter systems and may thus help to control PD symptoms and side effect of dopamine medication. Here, we review the effect on sex hormones (estrogen, androgen, progesterone and its metabolites) as well as androstenediol, pregnenolone and dehydroepiandrosterone) in human studies and in animal models of PD. The effect of neuroactive steroids is reviewed by considering sex and hormonal status to help identify specifically for women and men with PD what might be a preventive approach or a symptomatic treatment. PD is a complex disease and the pathogenesis likely involves multiple cellular processes. Thus it might be useful to target different cellular mechanisms that contribute to neuronal loss and neuroactive steroids provide therapeutics options as they have multiple mechanisms of action.


Assuntos
Neuroesteroides , Doença de Parkinson , Masculino , Animais , Humanos , Feminino , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Neuroesteroides/uso terapêutico , Hormônios Esteroides Gonadais/metabolismo , Estrogênios/metabolismo , Progesterona/metabolismo , Progesterona/uso terapêutico , Animais de Laboratório , Neurotransmissores
9.
Front Neuroendocrinol ; 33(2): 169-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22387674

RESUMO

Studies with the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of Parkinson's disease have shown the ability of 17ß-estradiol to protect the nigrostriatal dopaminergic system. This paper reviews the signaling pathways mediating the neuroprotective effect of 17ß-estradiol against MPTP-induced toxicity. The mechanisms of 17ß-estradiol action implicate activation of signaling pathways such as the phosphatidylinositol-3 kinase/Akt and the mitogen-activated protein kinase pathways. 17ß-estradiol signaling is complex and integrates multiple interactions with signaling molecules that act to potentiate a protective effect. 17ß-estradiol signaling is mediated via estrogen receptors, including GPER1, but others receptors, such as the IGF-1 receptor, are implicated in the neuroprotective effect. Glial and neuronal crosstalk is a critical factor in the maintenance of dopamine neuronal survival and in the neuroprotective action of 17ß-estradiol. Compounds that stimulate GPER1 such as selective estrogen receptor modulators and phytoestrogens show neuroprotective activity and are alternatives to 17ß-estradiol.


Assuntos
Hormônios Esteroides Gonadais/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/psicologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transdução de Sinais/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Estrogênios/farmacologia , Humanos , Modelos Biológicos , Doença de Parkinson/genética , Doença de Parkinson/prevenção & controle , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
Brain ; 135(Pt 1): 105-16, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22120148

RESUMO

The development of new treatments for essential tremor, the most frequent movement disorder, is limited by a poor understanding of its pathophysiology and the relative paucity of clinicopathological studies. Here, we report a post-mortem decrease in GABA(A) (35% reduction) and GABA(B) (22-31% reduction) receptors in the dentate nucleus of the cerebellum from individuals with essential tremor, compared with controls or individuals with Parkinson's disease, as assessed by receptor-binding autoradiography. Concentrations of GABA(B) receptors in the dentate nucleus were inversely correlated with the duration of essential tremor symptoms (r(2) = 0.44, P < 0.05), suggesting that the loss of GABA(B) receptors follows the progression of the disease. In situ hybridization experiments also revealed a diminution of GABA(B(1a+b)) receptor messenger RNA in essential tremor (↓27%). In contrast, no significant changes of GABA(A) and GABA(B) receptors (protein and messenger RNA), GluN2B receptors, cytochrome oxidase-1 or GABA concentrations were detected in molecular or granular layers of the cerebellar cortex. It is proposed that a decrease in GABA receptors in the dentate nucleus results in disinhibition of cerebellar pacemaker output activity, propagating along the cerebello-thalamo-cortical pathways to generate tremors. Correction of such defective cerebellar GABAergic drive could have a therapeutic effect in essential tremor.


Assuntos
Núcleos Cerebelares/metabolismo , Tremor Essencial/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autorradiografia , Tremor Essencial/genética , Feminino , Humanos , Masculino , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/genética
11.
Brain Res Bull ; 199: 110668, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196734

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Inflammation has been observed in both the idiopathic and familial forms of PD. Importantly, PD is reported more often in men than in women, men having at least 1.5- fold higher risk to develop PD than women. This review summarizes the impact of biological sex and sex hormones on the neuroimmune contributions to PD and its investigation in animal models of PD. Innate and peripheral immune systems participate in the brain neuroinflammation of PD patients and is reproduced in neurotoxin, genetic and α-synuclein based models of PD. Microglia and astrocytes are the main cells of the innate immune system in the central nervous system and are the first to react to restore homeostasis in the brain. Analysis of serum immunoprofiles in female and male control and PD patients show that a great proportion of these markers differ between males and females. The relationship between cerebrospinal fluid inflammatory markers and PD clinical characteristics or PD biomarkers shows sex differences. Conversely, in animal models of PD, sex differences in inflammation are well documented and the beneficial effects of endogenous and exogenous estrogenic modulation in inflammation have been reported. Targeting neuroinflammation in PD is an emerging therapeutic option but gonadal drugs have not yet been investigated in this respect, thus offering new opportunities for sex specific treatments.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Feminino , Masculino , Doença de Parkinson/genética , Doenças Neuroinflamatórias , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Inflamação , Microglia/metabolismo
12.
Brain Res ; 1809: 148349, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36972837

RESUMO

Overactivity of the corticostriatal glutamatergic pathway is documented in Parkinson's disease (PD) and stimulation of presynaptic metabotropic glutamate (mGlu) receptors 4 on these striatal afferents inhibits glutamate release normalizing neuronal activity in the basal ganglia. Moreover, mGlu4 receptors are also expressed in glial cells and are able to modulate glial function making this receptor a potential target for neuroprotection. Hence, we investigated whether foliglurax, a positive allosteric modulator of mGlu4 receptors with high brain exposure after oral administration, has neuroprotective effects in MPTP mice to model early PD. Male mice were treated daily from day 1 to 10 with 1, 3 or 10 mg/kg of foliglurax and administered MPTP on the 5th day then euthanized on the 11th day. Dopamine neuron integrity was assessed with measures of striatal dopamine and its metabolites levels, striatal and nigral dopamine transporter (DAT) binding and inflammation with markers of striatal astrocytes (GFAP) and microglia (Iba1). MPTP lesion produced a decrease in dopamine, its metabolites and striatal DAT specific binding that was prevented by treatment with 3 mg/kg of foliglurax, whereas 1 and 10 mg/kg had no beneficial effect. MPTP mice had increased levels of GFAP; foliglurax treatment (3 mg/kg) prevented this increase. Iba1 levels were unchanged in MPTP mice compared to control mice. There was a negative correlation between dopamine content and GFAP levels. Our results show that positive allosteric modulation of mGlu4 receptors with foliglurax provided neuroprotective effects in the MPTP mouse model of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Antiparkinsonianos , Neurônios Dopaminérgicos , Fármacos Neuroprotetores , Receptores de Glutamato Metabotrópico , Animais , Masculino , Camundongos , Regulação Alostérica/efeitos dos fármacos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia , Gânglios da Base/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Neostriado/efeitos dos fármacos , Neostriado/metabolismo
13.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37259303

RESUMO

Parkinson's disease (PD) is characterized by neurodegeneration and neuroinflammation. PD prevalence and incidence are higher in men than in women and modulation of gonadal hormones could have an impact on the disease course. This was investigated in male and female gonadectomized (GDX) and SHAM operated (SHAM) mice. Dutasteride (DUT), a 5α-reductase inhibitor, was administered to these mice for 10 days to modulate their gonadal sex hormones. On the fifth day of DUT treatment, mice received 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to model PD. We have previously shown in these mice the toxic effect of MPTP in SHAM and GDX males and in GDX females on dopamine markers and astrogliosis whereas SHAM females were protected by their female sex hormones. In SHAM males, DUT protected against MPTP toxicity. In the present study, microglial density and the number of doublets, representative of a microglial proliferation, were increased by the MPTP lesion only in male mice and prevented by DUT in SHAM males. A three-dimensional morphological microglial analysis showed that MPTP changed microglial morphology from quiescent to activated only in male mice and was not prevented by DUT. In conclusion, microgliosis can be modulated by sex hormone-dependent and independent factors in a mice model of PD.

14.
Biomolecules ; 13(6)2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371557

RESUMO

The mutation and overexpression of the alpha-synuclein protein (αSyn), described as synucleinopathy, is associated with Parkinson's disease (PD)-like pathologies. A higher prevalence of PD is documented for men versus women, suggesting female hormones' implication in slowing PD progression. The nigrostriatal dopamine (DA) neurons in rodent males are more vulnerable to toxins than those in females. The effect of biological sex on synucleinopathy remains poorly described and was investigated using mice knocked out for murine αSyn (SNCA-/-) and also overexpressing human αSyn (SNCA-OVX) compared to wildtype (WT) mice. All the mice showed decreased locomotor activity with age, and more abruptly in the male than in the female SNCA-OVX mice; anxiety-like behavior increased with age. The SNCA-OVX mice had an age-dependent accumulation of αSyn. Older age was associated with the loss of nigral DA neurons and decreased striatal DA contents. The astrogliosis, microgliosis, and cytokine concentrations increased with aging. More abrupt nigrostriatal DA decreases and increased microgliosis were observed in the male SNCA-OVX mice. Human αSyn overexpression and murine αSyn knockout resulted in behavioral dysfunctions, while only human αSyn overexpression was toxic to DA neurons. At 18 months, neuroprotection was lost in the female SNCA-OVX mice, with a likely loss of estrus cycles. In conclusion, sex-dependent αSyn toxicity was observed, affecting the male mice more significantly.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Masculino , Feminino , Camundongos , Animais , Sinucleinopatias/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo , Corpo Estriado/metabolismo
15.
Cells ; 11(4)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203338

RESUMO

Proinflammatory markers were found in brains of Parkinson's disease (PD) patients. After years of L-Dopa symptomatic treatment, most PD patients develop dyskinesias. The relationship between inflammation and L-Dopa-induced dyskinesias (LID) is still unclear. We previously reported that MPEP (a metabotropic glutamate receptor 5 antagonist) reduced the development of LID in de novo MPTP-lesioned monkeys. We thus investigated if MPEP reduced the brain inflammatory response in these MPTP-lesioned monkeys and the relationship to LID. The panmacrophage/microglia marker Iba1, the phagocytosis-related receptor CD68, and the astroglial protein GFAP were measured by Western blots. The L-Dopa-treated dyskinetic MPTP monkeys had increased Iba1 content in the putamen, substantia nigra, and globus pallidus, which was prevented by MPEP cotreatment; similar findings were observed for CD68 contents in the putamen and globus pallidus. There was a strong positive correlation between dyskinesia scores and microglial markers in these regions. GFAP contents were elevated in MPTP + L-Dopa-treated monkeys among these brain regions and prevented by MPEP in the putamen and subthalamic nucleus. In conclusion, these results showed increased inflammatory markers in the basal ganglia associated with LID and revealed that MPEP inhibition of glutamate activity reduced LID and levels of inflammatory markers.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Animais , Encéfalo/metabolismo , Humanos , Inflamação/metabolismo , Levodopa/metabolismo , Macaca fascicularis , Doença de Parkinson/metabolismo , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo
16.
J Mass Spectrom ; 57(5): e4827, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35460139

RESUMO

24S-hydroxycholesterol (i.e., cerebrosterol, 24S-OH-Chol) is the main form of cholesterol elimination from the brain. Liquid chromatography-tandem mass spectrometry methods were developed for the quantification of the total and unesterified/unbound fractions of 24S-OH-Chol, its monosulfate, monoglucuronide, and diconjugate derivatives (24S-OH-Chol-3sulfate [3S], 24S-OH-Chol-24glucuronide [24G] and 24S-OH-Chol-3S, 24G, respectively) in human plasma. Linearity, precision, accuracy, and extraction recovery were validated within the typical physiological and pathological ranges of concentrations for each compound. The lower limit of quantifications was 2.00, 0.33, 0.26, and 0.74 ng/ml for 24S-OH-Chol, 24S-OH-Chol-24G, 24S-OH-Chol-3S, and 24-OH-Chol-3S, 24G, respectively. Extraction recovery values in total and unbound plasma fractions were also analyzed in murine and monkey plasma and varied from 73% in mouse to 113% in cynomolgus monkey. The methods could rapidly (less than 7 min) quantify individual compounds with high sensitivity, accuracy (bias ≤15%), and reproducibility (coefficient of variation [CV] ≤ 17%). Their clinical applications were validated by measuring levels of the 4 compounds in samples from 20 noncholestatic donors, 5 cholestatic patients suffering from primary biliary cirrhosis, and 10 patients suffering from biliary stenosis. Results highlight the abundance of 24S-OH-Chol in the total fraction and the abundance of 24S-OH-Chol-3S and 24G in the unbound ones. While the latter strongly accumulate in plasma fractions of cholestatic patients, levels of 24S-OH-Chol remained similar to those of healthy donors. Our results indicate that this approach is suitable for monitoring cerebrosterol and its conjugates in large-scale clinical studies.


Assuntos
Glucuronídeos , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Humanos , Hidroxicolesteróis , Macaca fascicularis , Camundongos , Reprodutibilidade dos Testes , Sulfatos
17.
Cells ; 11(22)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428960

RESUMO

N-methyl-D-aspartate (NMDA) receptors have been implicated in L-Dopa-induced dyskinesias (LID) in Parkinson's disease patients, but the use of antagonists that directly inhibit this receptor is associated with severe side effects. L-4-chlorokynurenine (4-Cl-KYN or AV-101) is a pro-drug of 7-chlorokynurenic acid (7-Cl-KYNA), a potent and specific antagonist of the glycine (GlyB) co-agonist site of NMDA receptors. The 7-Cl-KYNA has limited ability to cross the blood-brain barrier, whereas AV-101 readily accesses the brain. We investigated if AV-101 reduces LID in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys while maintaining the antiparkinsonian activity of L-Dopa. A first pilot study using three dyskinetic MPTP monkeys showed that acute AV-101 treatment (250 and 450 mg/kg) reduced LID and maintained the antiparkinsonian activity of L-Dopa. The main study using six additional dyskinetic MPTP monkeys showed that repeated AV-101 treatment (250 mg/kg, b.i.d. for 4 consecutive days) maintained their L-Dopa antiparkinsonian response. We measured significantly less LID when AV-101 was combined with L-Dopa treatment. AV-101 alone or with L-Dopa had no non-motor adverse effects in MPTP monkeys. Our study showed antidyskinetic activity of AV-101 in MPTP monkeys was comparable to amantadine tested previously in our laboratory in this model. We observed no adverse effects with AV-101, which is an improvement over amantadine, with its known side effects.


Assuntos
Discinesia Induzida por Medicamentos , Fármacos Neuroprotetores , Transtornos Parkinsonianos , Pró-Fármacos , Animais , Levodopa/efeitos adversos , Receptores de N-Metil-D-Aspartato , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Glicina/farmacologia , Glicina/uso terapêutico , Projetos Piloto , Transtornos Parkinsonianos/induzido quimicamente , Macaca fascicularis , Antiparkinsonianos/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Amantadina/farmacologia , Amantadina/uso terapêutico
18.
Front Pharmacol ; 13: 898067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935876

RESUMO

Gastrointestinal disorders in Parkinson's disease (PD) have been associated with neuronal alteration in the plexus of the gut. We previously demonstrated the immunomodulatory effect of female hormones to treat enteric neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. This study made the hypothesis of obtaining similar neuroprotection as with hormone treatments by affecting steroidogenesis with two 5α-reductase inhibitors, finasteride and dutasteride. These drugs are approved to treat benign prostatic hyperplasia and alopecia and display mitochondrial effects. In MPTP-treated mice, the dopaminergic and vasoactive intestinal peptide (VIP) neurons alteration was prevented by finasteride and dutasteride, while the increase in proinflammatory macrophages density was inhibited by dutasteride treatment but not finasteride. NF-κB response, oxidative stress, and nitric oxide and proinflammatory cytokines production in vitro were only prevented by dutasteride. In addition, mitochondrial production of free radicals, membrane depolarization, decreased basal respiration, and ATP production were inhibited by dutasteride, while finasteride had no effect. In conclusion, the present results indicate that dutasteride treatment prevents enteric neuronal damages in the MPTP mouse model, at least in part through anti-inflammatory and mitochondrial effects. This suggests that drug repurposing of dutasteride might be a promising avenue to treat enteric neuroinflammation in early PD.

19.
Eur J Neurosci ; 33(10): 1823-31, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21501255

RESUMO

Levodopa-induced dyskinesias (LIDs) are abnormal involuntary movements induced by the chronic use of levodopa (l-Dopa) limiting the quality of life of Parkinson's disease (PD) patients. We evaluated changes of the serotonin 5-HT(2A) receptors in control monkeys, in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys and in l-Dopa-treated MPTP monkeys, without or with adjunct treatments to inhibit the expression of LID: CI-1041, a selective NR1A/2B subunit antagonist of glutamate N-methyl-d-aspartic acid (NMDA) receptor, or Cabergoline, a long-acting dopamine D(2) receptor agonist. All treatments were administered for 1 month and animals were killed 24 h after the last dose of l-Dopa. Striatal concentrations of serotonin were decreased in all MPTP monkeys investigated, as measured by high-performance liquid chromatography. [(3) H]Ketanserin-specific binding to 5-HT(2A) receptors was measured by autoradiography. l-Dopa treatment that induced dyskinesias increased 5-HT(2A) receptor-specific binding in the caudate nucleus and the anterior cingulate gyrus (AcgG) compared with control monkeys. Moreover, [(3) H]Ketanserin-specific binding was increased in the dorsomedial caudate nucleus in l-Dopa-treated MPTP monkeys compared with saline-treated MPTP monkeys. Nondyskinetic monkeys treated with CI-1041 or Cabergoline showed low 5-HT(2A) -specific binding in the posterior dorsomedial caudate nucleus and the anterior AcgG compared with dyskinetic monkeys. No significant difference in 5-HT(2A) receptor binding was observed in any brain regions examined in saline-treated MPTP monkeys compared with control monkeys. These results confirm the involvement of serotonergic pathways and the glutamate/serotonin interactions in LID. They also support targeting 5-HT(2A) receptors as a potential treatment for LID.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Encéfalo/metabolismo , Dopaminérgicos/farmacologia , Discinesia Induzida por Medicamentos/fisiopatologia , Levodopa/efeitos adversos , Transtornos Parkinsonianos/fisiopatologia , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Antiparkinsonianos/farmacologia , Comportamento Animal/fisiologia , Aminas Biogênicas/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cabergolina , Ergolinas/farmacologia , Feminino , Humanos , Ketanserina/metabolismo , Levodopa/uso terapêutico , Macaca , Transtornos Parkinsonianos/tratamento farmacológico
20.
Mov Disord ; 26(7): 1243-50, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21484867

RESUMO

Study objectives were to assess the efficacy, safety, and tolerability of AFQ056 in Parkinson's disease patients with levodopa-induced dyskinesia. Two randomized, double-blind, placebo-controlled, parallel-group, in-patient studies for Parkinson's disease patients with moderate to severe levodopa-induced dyskinesia (study 1) and severe levodopa-induced dyskinesia (study 2) on stable dopaminergic therapy were performed. Patients received 25-150 mg AFQ056 or placebo twice daily for 16 days (both studies). Study 2 included a 4-day down-titration. Primary outcomes were the Lang-Fahn Activities of Daily Living Dyskinesia Scale (study 1), the modified Abnormal Involuntary Movement Scale (study 2), and the Unified Parkinson's Disease Rating Scale-part III (both studies). Secondary outcomes included the Unified Parkinson's Disease Rating Scale-part IV items 32-33. The primary analysis was change from baseline to day 16 on all outcomes. Treatment differences were assessed. Fifteen patients were randomized to AFQ056 and 16 to placebo in study 1; 14 patients were randomized to each group in study 2. AFQ056-treated patients showed significant improvements in dyskinesias on day 16 versus placebo (eg, Lang-Fahn Activities of Daily Living Dyskinesia Scale, P = .021 [study 1]; modified Abnormal Involuntary Movement Scale, P = .032 [study 2]). No significant changes were seen from baseline on day 16 on the Unified Parkinson's Disease Rating Scale-part III in either study. Adverse events were reported in both studies, including dizziness. Serious adverse events (most commonly worsening of dyskinesias, apparently associated with stopping treatment) were reported by 4 AFQ056-treated patients in study 1, and 3 patients (2 AFQ056-treated patient and 1 in the placebo group) in study 2. AFQ056 showed a clinically relevant and significant antidyskinetic effect without changing the antiparkinsonian effects of dopaminergic therapy. © 2011 Movement Disorder Society.


Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antiparkinsonianos/efeitos adversos , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Receptor de Glutamato Metabotrópico 5 , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA