Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298633

RESUMO

The management of advanced-stage melanoma is clinically challenging, mainly because of its resistance to the currently available therapies. Therefore, it is important to develop alternative therapeutic strategies. The sigma-2 receptor (S2R) is overexpressed in proliferating tumor cells and represents a promising vulnerability to target. Indeed, we have recently identified a potent S2R modulator (BS148) that is effective in melanoma. To elucidate its mechanism of action, we designed and synthesized a BS148 fluorescent probe that enters SK-MEL-2 melanoma cells as assessed using confocal microscopy analysis. We show that S2R knockdown significantly reduces the anti-proliferative effect induced by BS148 administration, indicating the engagement of S2R in BS148-mediated cytotoxicity. Interestingly, BS148 treatment showed similar molecular effects to S2R RNA interference-mediated knockdown. We demonstrate that BS148 administration activates the endoplasmic reticulum stress response through the upregulation of protein kinase R-like ER kinase (PERK), activating transcription factor 4 (ATF4) genes, and C/EBP homologous protein (CHOP). Furthermore, we show that BS148 treatment downregulates genes related to the cholesterol pathway and activates the MAPK signaling pathway. Finally, we translate our results into patient-derived xenograft (PDX) cells, proving that BS148 treatment reduces melanoma cell viability and migration. These results demonstrate that BS148 is able to inhibit metastatic melanoma cell proliferation and migration through its interaction with the S2R and confirm its role as a promising target to treat cancer.


Assuntos
Melanoma , Receptores sigma , Humanos , Apoptose , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Transdução de Sinais , Receptores sigma/genética , Estresse do Retículo Endoplasmático , Fator de Transcrição CHOP/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , eIF-2 Quinase/metabolismo
2.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432180

RESUMO

The thermodynamic and kinetic properties for heterogeneous electron transfer (ET) were measured for the electrode-immobilized small laccase (SLAC) from Streptomyces coelicolor subjected to different electrostatic and covalent protein-electrode linkages, using cyclic voltammetry. Once immobilized electrostatically onto a gold electrode using mixed carboxyl- and hydroxy-terminated alkane-thiolate SAMs or covalently exploiting the same SAM subjected to N-hydroxysuccinimide+1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (NHS-EDC) chemistry, the SLAC-electrode electron flow occurs through the T1 center. The E°' values (from +0.2 to +0.1 V vs. SHE at pH 7.0) are lower by more than 0.2 V compared to the protein either in solution or immobilized with different anchoring strategies using uncharged SAMs. For the present electrostatic and covalent binding, this effect can, respectively, be ascribed to the negative charge of the SAM surfaces and to deletion of the positive charge of Lys/Arg residues due to amide bond formation which both selectively stabilize the more positively charged oxidized SLAC. Observation of enthalpy/entropy compensation within the series indicates that the immobilized proteins experience different reduction-induced solvent reorganization effects. The E°' values for the covalently attached SLAC are sensitive to three acid base equilibria, with apparent pKa values of pKa1ox = 5.1, pKa1red = 7.5, pKa2ox = 8.4, pKa2red = 10.9, pKa2ox = 8.9, pKa2red = 11.3 possibly involving one residue close to the T1 center and two residues (Lys and/or Arg) along with moderate protein unfolding, respectively. Therefore, the E°' value of immobilized SLAC turns out to be particularly sensitive to the anchoring mode and medium conditions.


Assuntos
Lacase , Streptomyces coelicolor , Lacase/química , Cinética , Elétrons , Eletrodos , Termodinâmica
3.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080396

RESUMO

The Met80Ala variant of yeast cytochrome c is known to possess electrocatalytic properties that are absent in the wild type form and that make it a promising candidate for biocatalysis and biosensing. The versatility of an enzyme is enhanced by the stability in mixed aqueous/organic solvents that would allow poorly water-soluble substrates to be targeted. In this work, we have evaluated the effect of dimethylsulfoxide (DMSO) on the functionality of the Met80Ala cytochrome c mutant, by investigating the thermodynamics and kinetics of electron transfer in mixed water/DMSO solutions up to 50% DMSO v/v. In parallel, we have monitored spectroscopically the retention of the main structural features in the same medium, focusing on both the overall protein structure and the heme center. We found that the organic solvent exerts only minor effects on the redox and structural properties of the mutant mostly as a result of the modification of the dielectric constant of the solvent. This would warrant proper functionality of this variant also under these potentially hostile experimental conditions, that differ from the physiological milieu of cytochrome c.


Assuntos
Citocromos c , Dimetil Sulfóxido , Citocromos c/metabolismo , Dimetil Sulfóxido/química , Cinética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Solventes , Termodinâmica , Água
4.
Molecules ; 26(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443538

RESUMO

Cytochrome c is a small globular protein whose main physiological role is to shuttle electrons within the mitochondrial electron transport chain. This protein has been widely investigated, especially as a paradigmatic system for understanding the fundamental aspects of biological electron transfer and protein folding. Nevertheless, cytochrome c can also be endowed with a non-native catalytic activity and be immobilized on an electrode surface for the development of third generation biosensors. Here, an overview is offered of the most significant examples of such a functional transformation, carried out by either point mutation(s) or controlled unfolding. The latter can be induced chemically or upon protein immobilization on hydrophobic self-assembled monolayers. We critically discuss the potential held by these systems as core constituents of amperometric biosensors, along with the issues that need to be addressed to optimize their applicability and response.


Assuntos
Técnicas Biossensoriais , Elétrons , Proteínas/metabolismo , Eletroquímica , Oxirredução , Mutação Puntual/genética , Dobramento de Proteína , Proteínas/química , Proteínas/genética
5.
J Biol Inorg Chem ; 25(3): 467-487, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189145

RESUMO

The interaction of cytochrome c with cardiolipin (CL) is a critical step in the initial stages of apoptosis and is mediated by a positively charged region on the protein surface comprising several lysine residues (site A). Here, the interaction of wt S. cerevisiae cytochrome c (ycc) and its K72A/K73A, K72A/K79A, K73A/K79A and K72A/K73A/K79A variants with CL was studied through UV-Vis and MCD spectroscopies at pH 7 and molecular dynamics (MD) simulations, to clarify the role of the mutated lysines. Moreover, the influence of the lipid to protein ratio on the interaction mechanism was investigated using low (0.5-10) and high (5-60) CL/ycc molar ratios, obtained with small and gradual or large and abrupt CL additions, respectively. Although all proteins bind to CL, switching from the native low-spin His/Met-ligated form to a low-spin bis-His conformer and to a high-spin species at larger CL concentrations, the two schemes of CL addition show relevant differences in the CL/ycc molar ratios at which the various conformers appear, due to differences in the interaction mechanism. Extended lipid anchorage and peripheral binding appear to prevail at low and high CL/ycc molar ratios, respectively. Simultaneous deletion of two or three surface positive charges from Site A does not abolish CL binding, but instead increases protein affinity for CL. MD calculations suggest this unexpected behavior results from the mutation-induced severe weakening of the H-bond connecting the Nε of His26 with the backbone oxygen of Glu44, which lowers the conformational stability compared to the wt species, overcoming the decreased surface electrostatic interaction.


Assuntos
Alanina/química , Cardiolipinas/química , Citocromos c/química , Lisina/química , Proteínas de Saccharomyces cerevisiae/química , Alanina/genética , Animais , Sítios de Ligação , Bovinos , Citocromos c/genética , Coração , Lisina/genética , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Eletricidade Estática , Propriedades de Superfície
6.
Biochemistry ; 58(6): 799-808, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532959

RESUMO

Forster resonance energy transfer (FRET)-based biosensors have been recently applied to the study of biological pathways. In this study, a new biosensor was validated for the first time in live HEK293 and steroidogenic MLTC-1 cell lines for studying the effect of the PDE5 inhibitor on the hCG/LH-induced steroidogenic pathway. The sensor improves FRET between a donor (D), the fluorescein-like diarsenical probe that can covalently bind a tetracysteine motif fused to the PDE5 catalytic domain, and an acceptor (A), the rhodamine probe conjugated to the pseudosubstrate cGMPS. Affinity constant ( Kd) values of 5.6 ± 3.2 and 13.7 ± 0.8 µM were obtained with HEK293 and MLTC-1 cells, respectively. The detection was based on the competitive displacement of the cGMPS-rhodamine conjugate by sildenafil; the Ki values were 3.6 ± 0.3 nM (IC50 = 2.3 nM) in HEK293 cells and 10 ± 1.0 nM (IC50 = 3.9 nM) in MLTC-1 cells. The monitoring of both cAMP and cGMP by bioluminescence resonance energy transfer allowed the exploitation of the effects of PDE5i on steroidogenesis, indicating that sildenafil enhanced the gonadotropin-induced progesterone-to-testosterone conversion in a cAMP-independent manner.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Inibidores da Fosfodiesterase 5/metabolismo , Progesterona/biossíntese , Citrato de Sildenafila/metabolismo , Testosterona/biossíntese , Animais , Arsenicais/química , Técnicas Biossensoriais/métodos , Domínio Catalítico , Linhagem Celular Tumoral , Gonadotropina Coriônica/farmacologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Cisteína/química , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Células HEK293 , Humanos , Hormônio Luteinizante/farmacologia , Camundongos , Inibidores da Fosfodiesterase 5/farmacologia , Progesterona/metabolismo , Ligação Proteica , Rodaminas/química , Citrato de Sildenafila/farmacologia , Testosterona/metabolismo
7.
J Biol Inorg Chem ; 22(4): 615-623, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28378164

RESUMO

Neuroglobin (Ngb) is a recently identified hexa-coordinated globin, expressed in the nervous system of humans. Its physiological role is still debated: one hypothesis is that Ngb serves as an electron transfer (ET) species, possibly by reducing cytochrome c and preventing it to initiate the apoptotic cascade. Here, we use the perturbed matrix method (PMM), a mixed quantum mechanics/molecular dynamics approach, to investigate the redox thermodynamics of two neuroglobins, namely the human Ngb and GLB-6 from invertebrate Caenorhabditis elegans. In particular, we calculate the reduction potential of the two globins, resulting in an excellent agreement with the experimental values, and we predict the reorganization energies, λ, which have not been determined experimentally yet. The calculated λ values match well those reported for known ET proteins and thereby support a potential involvement in vivo of the two globins in ET processes.


Assuntos
Globinas/química , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Teoria Quântica , Transporte de Elétrons , Neuroglobina , Termodinâmica
8.
J Biol Inorg Chem ; 20(3): 531-40, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25627142

RESUMO

Mitochondrial cytochrome c (cytc) plays an important role in programmed cell death upon binding to cardiolipin (CL), a negatively charged phospholipid of the inner mitochondrial membrane (IMM). Although this binding has been thoroughly investigated in solution, little is known on the nature and reactivity of the adduct (cytc-CL) immobilized at IMM. In this work, we have studied electrochemically cytc-CL immobilized on a hydrophobic self-assembled monolayer (SAM) of decane-1-thiol. This construct would reproduce the motional restriction and the nonpolar environment experienced by cytc-CL at IMM. Surface-enhanced resonance Raman (SERR) studies allowed the axial heme iron ligands to be identified, which were found to be oxidation state dependent and differ from those of cytc-CL in solution. In particular, immobilized cytc-CL experiences an equilibrium between a low-spin (LS) 6c His/His and a high-spin (HS) 5c His/- coordination states. The former prevails in the oxidized and the latter in the reduced form. Axial coordination of the ferric heme thus differs from the (LS) 6c His/Lys and (LS) 6c His/OH(-) states observed in solution. Moreover, a relevant finding is that the immobilized ferrous cytc-CL is able to catalytically reduce dioxygen, likely to superoxide ion. These findings indicate that restriction of motional freedom due to interaction with the membrane is an additional factor playing in the mechanism of cytc unfolding and cytc-mediated peroxidation functional to the apoptosis cascade.


Assuntos
Cardiolipinas/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Enzimas Imobilizadas/química , Heme/química , Oxigênio/química , Cardiolipinas/química , Citocromos c/genética , Eletroquímica , Variação Genética , Oxirredução , Ligação Proteica , Análise Espectral Raman
9.
J Inorg Biochem ; 252: 112455, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38141433

RESUMO

The cleavage of the axial S(Met) - Fe bond in cytochrome c (cytc) upon binding to cardiolipin (CL), a glycerophospholipid of the inner mitochondrial membrane, is one of the key molecular changes that impart cytc with (lipo)peroxidase activity essential to its pro-apoptotic function. In this work, UV - VIS, CD, MCD and fluorescence spectroscopies were used to address the role of the Fe - M80 bond in controlling the cytc-CL interaction, by studying the binding of the Met80Ala (M80A) variant of S. cerevisiae iso-1 cytc (ycc) to CL liposomes in comparison with the wt protein [Paradisi et al. J. Biol. Inorg. Chem. 25 (2020) 467-487]. The results show that the integrity of the six-coordinate heme center along with the distal heme site containing the Met80 ligand is a not requisite for cytc binding to CL. Indeed, deletion of the Fe - S(Met80) bond has a little impact on the mechanism of ycc-CL interaction, although it results in an increased heme accessibility to solvent and a reduced structural stability of the protein. In particular, M80A features a slightly tighter binding to CL at low CL/cytc ratios compared to wt ycc, possibly due to the lift of some constraints to the insertion of the CL acyl chains into the protein hydrophobic core. M80A binding to CL maintains the dependence on the CL-to-cytc mixing scheme displayed by the wt species.


Assuntos
Metionina , Saccharomyces cerevisiae , Metionina/química , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/química , Citocromos c/química , Heme/química , Ligantes , Racemetionina
10.
Phys Chem Chem Phys ; 15(32): 13499-505, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23824165

RESUMO

A bacterial di-heme cytochrome c binds electrostatically to a gold electrode surface coated with a negatively charged COOH-terminated SAM adopting a sort of 'perpendicular' orientation. Cyclic voltammetry, Resonance Raman and SERRS spectroscopies indicate that the high-potential C-terminal heme center proximal to the SAM's surface undergoes an adsorption-induced swapping of one axial His ligand with a water molecule, which is probably lost in the reduced form, and a low- to high-spin transition. This coordination change for a bis-His ligated heme center upon an electrostatically-driven molecular recognition is as yet unprecedented, as well as the resulting increase in reduction potential. We discuss it in comparison with the known methionine ligand lability in monoheme cytochromes c occurring upon interaction with charged molecular patches. One possible implication of this finding in biological ET is that mobile redox partners do not behave as rigid and invariant bodies, but in the ET complex are subjected to molecular changes and structural fluctuations that affect in a complex way the thermodynamics and the kinetics of the process.


Assuntos
Citocromos c/química , Ferro/química , Citocromos c/metabolismo , Eletrodos , Ouro/química , Oxirredução , Shewanella/enzimologia , Eletricidade Estática , Propriedades de Superfície
11.
FEBS J ; 290(1): 148-161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35866372

RESUMO

In the present study, human neuroglobin (hNgb) was found to undergo H2 O2 -induced breakdown of the heme center at a much slower rate than other globins, namely in the timescale of hours against minutes. We investigated how the rate of the process is affected by the Cys46/Cys55 disulfide bond and the network of non-covalent interactions in the distal heme side involving Tyr44, Lys67, the His64 heme iron axial ligand and the heme propionate-7. The rate is increased by the Tyr44 to Ala and Phe mutations; however the rate is lowered by Lys67 to Ala swapping. The absence of the disulfide bridge slows down the reaction further. Therefore, the disulfide bond-controlled accessibility of the heme site and the residues at position 44 and 67 affect the activation barrier of the reaction. Wild-type and mutated species form ß-amyloid aggregates in the presence of H2 O2 producing globular structures. Furthermore, the C46A/C55A, Y44A, Y44F and Y44F/C46A/C55A variants yield potentially harmful fibrils. Finally, the nucleation and growth kinetics for the aggregation of the amyloid structures can be successfully described by the Finke-Watzky model.


Assuntos
Peróxido de Hidrogênio , Agregados Proteicos , Humanos , Neuroglobina , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dissulfetos/metabolismo , Globinas/química , Heme/química , Hidrogênio
12.
Sci Rep ; 13(1): 10028, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340047

RESUMO

Polyethylene terephthalate hydrolases (PETases) are a newly discovered and industrially important class of enzymes that catalyze the enzymatic degradation of polyethylene terephatalate (PET), one of the most abundant plastics in the world. The greater enzymatic efficiencies of PETases compared to close relatives from the cutinase and lipase families have resulted in increasing research interest. Despite this, further characterization of PETases is essential, particularly regarding their possible activity against other kinds of plastic. In this study, we exploited for the first time the use of the microalgal chloroplast for more sustainable synthesis of a PETase enzyme. A photosynthetic-restoration strategy was used to generate a marker-free transformant line of the green microalga Chlamydomonas reinhardtii in which the PETase from Ideonella sakaiensis was constitutively expressed in the chloroplast. Subsequently, the activity of the PETase against both PET and post-consumer plastics was investigated via atomic force microscopy, revealing evidence of degradation of the plastics.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Humanos , Microalgas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Plásticos , Hidrolases/metabolismo , Polietilenotereftalatos , Cloroplastos/metabolismo
13.
Biochemistry ; 51(30): 5967-78, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22775438

RESUMO

The low-pH conformational equilibria of ferric yeast iso-1 cytochrome c (ycc) and its M80A, M80A/Y67H, and M80A/Y67A variants were studied from pH 7 to 2 at low ionic strength through electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies. For wild-type ycc, the protein structure, axial heme ligands, and spin state of the iron atom convert from the native folded His/Met low-spin (LS) form to a molten globule His/H(2)O high-spin (HS) form and a totally unfolded bis-aquo HS state, in a single cooperative transition with an apparent pK(a) of ~3.0. An analogous cooperative transition occurs for the M80A and M80A/Y67H variants. This is preceded by protonation of heme propionate-7, with a pK(a) of ~4.2, and by an equilibrium between a His/OH(-)-ligated LS and a His/H(2)O-ligated HS conformer, with a pK(a) of ~5.9. In the M80A/Y67A variant, the cooperative low-pH transition is split into two distinct processes because of an increased stability of the molten globule state that is formed at higher pH values than the other species. These data show that removal of the axial methionine ligand does not significantly alter the mechanism of acidic unfolding and the ranges of stability of low-pH conformers. Instead, removal of a hydrogen bonding partner at position 67 increases the stability of the molten globule and renders cytochrome c more susceptible to acid unfolding. This underlines the key role played by Tyr67 in stabilizing the three-dimensional structure of cytochrome c by means of the hydrogen bonding network connecting the Ω loops formed by residues 71-85 and 40-57.


Assuntos
Citocromos c/fisiologia , Metionina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Tirosina/química , Citocromos c/química , Concentração de Íons de Hidrogênio , Metionina/fisiologia , Conformação Proteica , Desdobramento de Proteína , Proteínas de Saccharomyces cerevisiae/fisiologia , Tirosina/fisiologia
14.
Langmuir ; 28(42): 15087-94, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23009339

RESUMO

The thermodynamics of Cu(II) to Cu(I) reduction and the kinetics of the electron transfer (ET) process for Rhus vernicifera stellacyanin (STC) immobilized on a decane-1-thiol coated gold electrode have been measured through cyclic voltammetry at varying pH and temperature, in the presence of urea and in D(2)O. Immobilized STC undergoes a limited conformational change that mainly results in an enhanced exposure of one or both copper binding histidines to solvent which slightly stabilizes the cupric state and increases histidine basicity. The large immobilization-induced increase in the pK(a) for the acid transition (from 4.5 to 6.3) makes this electrode-SAM-protein construct an attractive candidate as a biomolecular ET switch operating near neutral pH in molecular electronics. Such a potential interest is increased by the robustness of this interface against chemical unfolding as it undergoes only moderate changes in the reduction thermodynamics and in the ET rate in the presence of up to 8 M urea. The sensitivity of these parameters to solvent H/D isotope effects testifies to the role of protein solvation as effector of the thermodynamics and kinetics of ET.


Assuntos
Metaloproteínas/química , Proteínas de Plantas/química , Termodinâmica , Ureia/química , Medição da Troca de Deutério , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Ouro/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Desdobramento de Proteína , Rhus/química , Solventes/química , Temperatura
15.
Foods ; 11(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35804730

RESUMO

In this study, eight lactic acid bacteria (LAB) strains, previously isolated from traditional and gluten-free sourdoughs, and selected for their potential in improving the sensory and rheological quality of bakery products, were screened against some common spoilage agents. The anti-mould activity was tested using strains of the species Fusarium graminearum, Aspergillus flavus, Penicillium paneum and Aspergillus niger. Regarding the antibacterial activity, it was assessed against four strains of the species Escherichia coli, Campylobacter jejuni, Salmonella typhimurium and Listeria monocytogenes. Furthermore, LAB strains were evaluated for their ability to produce exopolysaccharides, which are gaining considerable attention for their functional properties and applicability in different food industrial applications. A strain-specific behaviour against the moulds was observed. In particular, F. graminearum ITEM 5356 was completely inhibited by all the LAB strains. Regarding the antibacterial activity, the strains Leuconostoc citreum UMCC 3011, Lactiplantibacillus plantarum UMCC 2996, and Pediococcus pentosaceus UMCC 3010 showed wide activity against the tested pathogens. Moreover, all the LAB strains were able to produce exopolysaccharides, which were preliminarily characterized. The assessed features of the LAB strains allow us to consider them as promising candidates for single or multiple starter cultures for food fermentation processes.

16.
FEBS J ; 289(4): 1105-1117, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34679218

RESUMO

The autosomal dominant striated muscle disease myoglobinopathy is due to the single point mutation His98Tyr in human myoglobin (MB), the heme protein responsible for binding, storage, and controlled release of O2 in striated muscle. In order to understand the molecular basis of this disease, a comprehensive biochemical and biophysical study on wt MB and the variant H98Y has been performed. Although only small differences exist between the active site architectures of the two proteins, the mutant (a) exhibits an increased reactivity toward hydrogen peroxide, (b) exhibits a higher tendency to form high-molecular-weight aggregates, and (c) is more prone to heme bleaching, possibly as a consequence of the observed H2 O2 -induced formation of the Tyr98 radical close to the metal center. These effects add to the impaired oxygen binding capacity and faster heme dissociation of the H98Y variant compared with wt MB. As the above effects result from bond formation/cleavage events occurring at the distal and proximal heme sites, it appears that the molecular determinants of the disease are localized there. These findings set the basis for clarifying the onset of the cascade of chemical events that are responsible for the pathological symptoms of myoglobinopathy.


Assuntos
Histidina/genética , Doenças Musculares/genética , Mioglobina/genética , Histidina/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Modelos Moleculares , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Mioglobina/metabolismo , Conformação Proteica
17.
Protein Sci ; 31(3): 591-601, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897841

RESUMO

Pseudomonas putida W619 is a soil Gram-negative bacterium commonly used in environmental studies thanks to its ability in degrading many aromatic compounds. Its genome contains several putative carbohydrate-active enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases (PMOs). In this study, we have heterologously produced in Escherichia coli and characterized a new enzyme belonging to the AA10 family, named PpAA10 (Uniprot: B1J2U9), which contains a chitin-binding type-4 module and showed activity toward ß-chitin. The active form of the enzyme was produced in E. coli exploiting the addition of a cleavable N-terminal His tag which ensured the presence of the copper-coordinating His as the first residue. Electron paramagnetic resonance spectroscopy showed signal signatures similar to those observed for the copper-binding site of chitin-cleaving PMOs. The protein was used to develop a versatile, highly sensitive, cost-effective and easy-to-apply method to detect PMO's activity exploiting attenuated total reflection-Fourier transform infrared spectroscopy and able to easily discriminate between different substrates.


Assuntos
Oxigenases de Função Mista , Pseudomonas putida , Escherichia coli/genética , Escherichia coli/metabolismo , Oxigenases de Função Mista/química , Polissacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Especificidade por Substrato
18.
Mol Cell Endocrinol ; 542: 111527, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34875337

RESUMO

Type 5 phosphodiesterase (PDE5) blockade by inhibitors (PDE5i) results in intracellular cyclic guanosine monophosphate (cGMP) increase and smooth muscle relaxation and are used for the treatment of men erectile dysfunction. Although they have high specificity for PDE5, these inhibitors are suspected to cross-interact also with cyclic adenosine monophosphate (cAMP)-specific PDEs, inducing the intracellular accumulation of this cyclic nucleotide and related testosterone increase, positively impacting male reproductive parameters. However, the link between the use of PDE5i and the activation of cAMP-mediated steroidogenesis is still unclear. We have investigated whether three PDE5i, sildenafil, tadalafil and vardenafil, cross-interacts with the high affinity cAMP-specific enzymes type 8A and 8B PDEs (PDE8A and PDE8B), in live, transfected mouse Leydig tumor (mLTC1) and human embryonic kidney (HEK293) cell lines in vitro. The PDE5i-induced production of cAMP-dependent testosterone and its precursor progesterone was evaluated as well. We have developed PDE8A/B biosensors and modified cyclic nucleotides confirming enzyme binding to cAMP, but not to cGMP, in our cell models. cAMP binding to PDE8A/B was displaced upon cell treatment with PDE5i, revealing that sildenafil, tadalafil and vardenafil have similar effectiveness in live cells, in vitro. The cross-interaction between PDE5i and PDE8A/B supports the gonadotropin-enhanced intracellular cAMP increase, occurring together with cGMP increase, as well as steroid synthesis. Indeed, we found that Leydig cell treatment by PDE5i increases progesterone and testosterone production triggered by gonadotropins. We demonstrated that PDE5i may interact with the cAMP-specific PDE8A and PDE8B, possibly inducing intracellular cAMP and sex steroid hormone increase. These findings support clinical data suggesting that PDE5i might increase testosterone levels in men.


Assuntos
Inibidores da Fosfodiesterase 5 , Diester Fosfórico Hidrolases , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Masculino , Camundongos , Inibidores da Fosfodiesterase 5/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Piperazinas/farmacologia , Isoformas de Proteínas/metabolismo , Purinas/farmacologia , Sistemas do Segundo Mensageiro , Citrato de Sildenafila/farmacologia , Esteroides/farmacologia , Sulfonas , Tadalafila/farmacologia , Triazinas/farmacologia , Dicloridrato de Vardenafila/farmacologia
19.
J Biol Inorg Chem ; 16(3): 461-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21161306

RESUMO

The 16-kDa diheme cytochrome c from the bacterium Shewanella baltica OS155 (Sb-DHC) was cloned and expressed in Escherichia coli and investigated through UV-vis, magnetic circular dichroism, and (1)H NMR spectroscopies and protein voltammetry. The model structure was obtained by means of comparative modeling using the X-ray structure of Rhodobacter sphaeroides diheme cytochrome c (Rs-DHC) (with a 37% pairwise sequence identity) as a template. Sb-DHC folds into two distinct domains, each containing one heme center with a bis-His axial ligation. Both secondary and tertiary structures of the N-terminal domain resemble those of class I cytochrome c, displaying three α-helices and a compact overall folding. The C-terminal domain is less helical than the corresponding domain of Rs-DHC. The two heme groups are bridged by Tyr26 in correspondence with the shortest edge-to-edge distance, a feature which would facilitate fast internal electron transfer. The electronic properties of the two prosthetic centers are equivalent and sensitive to two acid-base equilibria with pK (a) values of approximately 2.4 and 5, likely corresponding to protonation and detachment of the axial His ligands from the heme iron and a pH-linked conformational change of the protein, respectively. Reduction potentials of -0.144 and -0.257 V (vs. the standard hydrogen electrode), were determined for the C- and N-terminal heme groups, respectively. An approach based on the extended Debye-Hückel equation was applied for the first time to a two-centered metalloprotein and was found to reproduce successfully the ionic strength dependence of E°'.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Shewanella/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dicroísmo Circular , Eletroquímica , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oxirredutases/genética , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Shewanella/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Termodinâmica
20.
Mol Cell Endocrinol ; 520: 111082, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189864

RESUMO

BACKGROUND AND AIMS: Sphingosine-1 phosphate (S1P) is a lysosphingolipid present in the ovarian follicular fluid. The role of the lysosphingolipid in gonads of the female is widely unclear. At nanomolar concentrations, S1P binds and activates five specific G protein-coupled receptors (GPCRs), known as S1P1-5, modulating different signaling pathways. S1P1 and S1P3 are highly expressed in human primary granulosa lutein cells (hGLC), as well as in the immortalized human primary granulosa cell line hGL5. In this study, we evaluated the signaling cascade activated by S1P and its synthetic analogues in hGLC and hGL5 cells, exploring the biological relevance of S1PR-stimulation in this context. METHODS AND RESULTS: hGLC and hGL5 cells were treated with a fixed dose (0.1 µM) of S1P, or by S1P1- and S1P3-specific agonists SEW2871 and CYM5541. In granulosa cells, S1P and, at a lesser extent, SEW2871 and CYM5541, potently induced CREB phosphorylation. No cAMP production was detected and pCREB activation occurred even in the presence of the PKA inhibitor H-89. Moreover, S1P-dependent CREB phosphorylation was dampened by the mitogen-activate protein kinase (MEK) inhibitor U0126 and by the L-type Ca2+ channel blocker verapamil. The complete inhibition of CREB phosphorylation occurred by blocking either S1P2 or S1P3 with the specific receptor antagonists JTE-013 and TY52156, or under PLC/PI3K depletion. S1P-dependent CREB phosphorylation induced FOXO1 and the EGF-like epiregulin-encoding gene (EREG), confirming the exclusive role of gonadotropins and interleukins in this process, but did not affect steroidogenesis. However, S1P or agonists did not modulate granulosa cell viability and proliferation in our conditions. CONCLUSIONS: This study demonstrates for the first time that S1P may induce a cAMP-independent activation of pCREB in granulosa cells, although this is not sufficient to induce intracellular steroidogenic signals and progesterone synthesis. S1P-induced FOXO1 and EREG gene expression suggests that the activation of S1P-S1PR axis may cooperate with gonadotropins in modulating follicle development.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Células da Granulosa/metabolismo , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Progesterona/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingosina/farmacologia , Fatores de Tempo , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA