RESUMO
Natural structural materials frequently consist of multimaterial nanocomposites with complex superstructure giving rise to exceptional mechanical properties, but also commonly preventing access to their synthetic reproduction. Here we present the spin-assisted layer-by-layer assembly of anisotropic wood-inspired films composed of anionic cellulose nanofibrils and cationic poly(vinyl amine) possessing a tensile strength that exceeds that of the wood from which the fibers originate. The degree of orientation of the nanofibrils was studied by atomic force microscopy and depends strongly on the distance from the center of the spun surface. The nanofibrils are preferentially aligned in the direction of the shear flow, and consequently, the mechanical properties of such films differ substantially when measured parallel and perpendicular to the fibril orientation direction. For enabling a diversity of bioinspired applications including sensing, packaging, electronics, or optics, the preparation of nanocomposite materials and devices with anisotropic physical properties requires an extreme level of control over the positioning and alignment of nanoscale objects within the matrix material.
RESUMO
Nanocomposite films possessing multiple interesting properties (mechanical strength, optical transparency, self-healing, and partial biodegradability) are discussed. We used Layer-by-Layer assembly to prepare micron thick wood-inspired films from anionic nanofibrillated cellulose and cationic poly(vinyl amine). The film growth was carried out at different pH values to obtain films of different chemical composition, whereby, and as expected, higher pH values led to a higher polycation content and also to 6 times higher film growth increments (from 9 to 55 nm per layer pair). In the pH range from 8 to 11, micron thick and optically transparent LbL films are obtained by automated dipping when dried regularly in a stream of air. Films with a size of 10 cm(2) or more can be peeled from flat surfaces; they show tensile strengths up to about 250 MPa and Young's moduli up to about 18 GPa as controlled by the polycation/polyanion ratio of the film. Experiments at different humidities revealed the plasticizing effect of water in the films and allowed reversible switching of their mechanical properties. Whereas dry films are strong and brittle (Young's modulus: 16 GPa, strain at break: 1.7%), wet films are soft and ductile (Young's modulus: 0.1 GPa, strain at break: 49%). Wet film surfaces even amalgamate upon contact to yield mechanically stable junctions. We attribute the switchability of the mechanical properties and the propensity for self-repair to changes in the polycation mobility that are brought about by the plastifying effect of water.