Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 20(1): 17, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106371

RESUMO

Inhalation is a portal-of-entry for aerosols via the respiratory tract where particulate burden accumulates depending on sites of particle deposition, normal clearance mechanisms, and particle solubility. The time available for dissolution of particles is determined by the balance between the rate of particle clearance from a region and their solubility in respiratory solvents. Dissolution is a function of particle surface area divided by particle volume or mass (i.e., dissolution is inversely proportional to the physical diameter of particles). As a conservative approach, investigators commonly assume the complete and instantaneous dissolution of metals from particles depositing in the alveolar region of the respiratory tract. We derived first-order dissolution rate constants to facilitate biokinetic modeling of particle clearance, dissolution, and absorption into the blood. We then modeled pulmonary burden and total dissolution of particles over time as a function of particle size, density, and solubility. We show that assuming poorly soluble particle forms will enter the blood as quickly as highly soluble forms causes an overestimation of concentrations of the compound of interest in blood and other extrapulmonary tissues while also underestimating its pulmonary burden. We conclude that, in addition to modeling dose rates for particle deposition into the lung, physiologically based pharmacokinetic modeling of pulmonary and extrapulmonary tissues concentrations of moderately and poorly soluble materials can be improved by including estimates of lung burden and particle dissolution over time.


Assuntos
Pulmão , Humanos , Solubilidade , Pulmão/fisiologia , Administração por Inalação , Aerossóis , Tamanho da Partícula
2.
Ecotoxicol Environ Saf ; 249: 114430, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192935

RESUMO

The effect of dietary lead on the intestinal microbiome has not been fully elucidated. To determine if there was an association between microflora modulation, predicted functional genes, and Pb exposure, mice were provided diets amended with increasing concentrations of a single lead compound, lead acetate, or a well characterized complex reference soil containing lead, i.e. 6.25-25 mg/kg Pb acetate (PbOAc) or 7.5-30 mg/kg Pb in reference soil SRM 2710a having 0.552 % Pb among other heavy metals such as Cd. Feces and ceca were collected following 9 days of treatment and the microbiome analyzed by 16 S rRNA gene sequencing. Treatment effects on the microbiome were observed in both feces and ceca of mice. Changes in the cecal microbiomes of mice fed Pb as Pb acetate or as a constituent in SRM 2710a were statistically different except for a few exceptions regardless of dietary source. This was accompanied by increased average abundance of functional genes associated with metal resistance, including those related to siderophore synthesis and arsenic and/or mercury detoxification. Akkermansia, a common gut bacterium, was the highest ranked species in control microbiomes whereas Lactobacillus ranked highest in treated mice. Firmicutes/Bacteroidetes ratios in the ceca of SRM 2710a treated mice increased more than with PbOAc, suggestive of changes in gut microbiome metabolism that promotes obesity. Predicted functional gene average abundance related to carbohydrate, lipid, and/or fatty acid biosynthesis and degradation were greater in the cecal microbiome of SRM 2710a treated mice. Bacilli/Clostridia increased in the ceca of PbOAc treated mice and may be indicative of increased risk of host sepsis. Family Deferribacteraceae also was modulated by PbOAc or SRM 2710a possibly impacting inflammatory response. Understanding the relationship between microbiome composition, predicted functional genes, and Pb concentration, especially in soil, may provide new insights into the utility of various remediation methodologies that minimize dysbiosis and modulate health effects, thus assisting in the selection of an optimal treatment for contaminated sites.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbioma Gastrointestinal/genética , Chumbo/toxicidade , Chumbo/metabolismo , Bactérias/metabolismo , Firmicutes/metabolismo , Solo
3.
J Toxicol Environ Health B Crit Rev ; 25(1): 1-22, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34706629

RESUMO

Extensive research has examined arsenic (As) bioavailability in contaminated soils and is routinely assessed using in vitro bioaccessibility (IVBA) assays. Analysis of differences in bioaccessibility measurements across IVBA assays and phases is expected to provide valuable insights into geochemical mechanisms controlling soil As bioaccessibility and bioavailability. Soil iron (Fe) content and As speciation are expected to significantly influence IVBA gastric and intestinal phases due to fluctuations in precipitation-dissolution chemistry and sorption reactivity as pH and assay chemical complexity changes. The aim of this review was to examine these relationships by 1) conducting a meta-analysis (n = 47 soils) determining the influence of total Fe on As bioaccessibility measurements and 5 IVBA assays and 2) investigating the effect of As speciation on gastric/intestinal phase IVBA and in vitro-in vivo correlations. Our findings indicate that soil Fe content and As speciation heterogeneity are important in elucidating variability of bioaccessibility measurements across IVBA assays and gastrointestinal phases. Greater focus on coupled As speciation and Fe precipitation chemistry may (1) improve our understanding of soil geochemical factors and assay constituents that influence As in vitro-in vivo correlations and (2) resolve variability in the precision of oral relative bioavailability (RBA) estimated using IVBA assays for soils possessing heterogenous As speciation and Fe composition.


Assuntos
Arsênio/análise , Ferro/análise , Poluentes do Solo/análise , Animais , Arsênio/farmacocinética , Disponibilidade Biológica , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Humanos , Solo/química
4.
J Toxicol Environ Health A ; 85(19): 815-825, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-35791284

RESUMO

Accurate assessment of adverse health effects attributable to ingestion of inorganic arsenic (As) present in contaminated soils requires determination of the internal dose of metal provided by ingested soil. This calculation requires estimation of the oral bioavailability of soil-borne (As). Animal models to assess the bioavailability of soil (As) are frequently used as surrogates for determination of this variable in humans. A mouse assay has been widely applied to estimate the bioavailability of As in soils at sites impacted by mining, smelting, and pesticides. In the mouse assay, the relative bioavailability (RBA) of soil (As) is determined as the ratio of the fraction of the ingested arsenic dose excreted in urine after consumption of diets containing a test soil or the soluble reference compound, sodium arsenate. The aim of the current study was to compare (As) bioavailability measured in the mouse assay with reported estimates in humans. Here, a pharmacokinetic model based on excretion of arsenic in urine and feces was used to estimate the absolute bioavailability (ABA) of As in mice that received an oral dose of sodium arsenate. Based upon this analysis, in mice that consumed diet amended with sodium arsenate, the ABA was 85%. This estimate of arsenic ABA for the mouse is comparable to estimates in humans who consumed (As) in drinking water and diet, and to estimates of ABA in monkeys and swine exposed to sodium arsenate. The concordance of estimates for ABA in mice and humans provides further support for use of the mouse model in human health risk assessment. Sodium arsenate ABA also provides a basis for estimating soil arsenic ABA from RBA estimates obtained in the mouse model.


Assuntos
Arsênio , Arsenicais , Poluentes do Solo , Animais , Arsênio/farmacocinética , Disponibilidade Biológica , Modelos Animais de Doenças , Humanos , Camundongos , Solo , Poluentes do Solo/farmacocinética , Suínos
5.
Environ Sci Technol ; 55(23): 15950-15960, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34806356

RESUMO

Lead (Pb) contamination of soils is of global concern due to the devastating impacts of Pb exposure in children. Because early-life exposure to Pb has long-lasting health effects, reducing exposure in children is a critical public health goal that has intensified research on the conversion of soil Pb to low bioavailability phases. Recently, plumbojarosite (PLJ) conversion of highly available soil Pb was found to decrease Pb relative bioavailability (RBA <10%). However, there is sparse information concerning interactions between Pb and other elements when contaminated soil, pre- and post-remediation, is ingested and moves through the gastrointestinal tract (GIT). Addressing this may inform drivers of effective chemical remediation strategies. Here, we utilize bulk and micro-focused Pb X-ray absorption spectroscopy to probe elemental interactions and Pb speciation in mouse diet, cecum, and feces samples following ingestion of contaminated soils pre- and post-PLJ treatment. RBA of treated soils was less than 1% with PLJ phases transiting the GIT with little absorption. In contrast, Pb associated with organics was predominantly found in the cecum. These results are consistent with transit of insoluble PLJ to feces following ingestion. The expanded understanding of Pb interactions during GIT transit complements our knowledge of elemental interactions with Pb that occur at higher levels of biological organization.


Assuntos
Poluentes do Solo , Solo , Animais , Disponibilidade Biológica , Poluição Ambiental , Camundongos , Poluentes do Solo/análise , Espectroscopia por Absorção de Raios X
6.
Environ Sci Technol ; 55(1): 402-411, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33307690

RESUMO

House dust and soils can be major sources of lead (Pb) exposure for children. The American Healthy Homes Survey (AHHS) was developed to estimate Pb exposure from house dust and soil, in addition to other potential household contaminants and allergens. We have combined X-ray absorption spectroscopic (XAS) fingerprinting and in vivo mouse relative bioavailability (RBA) measurements for a subset of house dust and residential soils collected in the AHHS, with the primary objective of gaining a better understanding of determinants of house dust Pb bioavailability. Lead speciation was well related to variations in RBA results and revealed that highly bioavailable Pb (hydroxy)carbonate (indicative of Pb-based paint) was the major Pb species present in house dusts. Measured Pb RBA was up to 100% and is likely driven by paint Pb. To our knowledge, this is the first report of in vivo Pb RBA for U.S. house dust contaminated in situ with paint Pb and corroborates results from a previous study that demonstrated high RBA of paint Pb added to soil. We also report a relatively low RBA (23%) in a residential soil where the major Pb species was found to be plumbojarosite, consistent with a previous report that plumbojarosite lowers Pb RBA in soils.


Assuntos
Poeira , Poluentes do Solo , Animais , Disponibilidade Biológica , Poeira/análise , Camundongos , Pintura , Solo , Poluentes do Solo/análise
7.
J Toxicol Environ Health A ; 84(15): 609-631, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33886436

RESUMO

The broad spectrum antimicrobial/antifungal zinc pyrithione (ZnPT) is used in products ranging from antifouling paint to antidandruff shampoo. The hazard profile of ZnPT was established based upon comprehensive toxicological testing, and products containing this biocide have been safely used for years. The purpose of this study was to create a dermal physiologically based pharmacokinetic (PBPK) model for ZnPT in the rat for improving dose-response analysis of ZnPT-induced toxicity where reversible hindlimb weakness was the endpoint used as the basis for ZnPT risk assessments. Previously, we developed a PBPK model which simulated the kinetics of pyrithione (PT) and its major metabolites 2-(methylsulfonyl)pyridine and S-glucuronide conjugates in blood and tissues of rats following oral ZnPT administration. The dermal model was optimized utilizing in vitro dermal penetration investigations conducted with rat skin and with historical data from a dermal repeat dose study using rats. The model replicated the observed temporal patterns and elimination kinetics of [14C]PT equivalents in blood and urine during and following repeated dermal dosing and replicated the observed dose-dependencies of absorption, blood [14C]PT equivalents and plasma PT concentrations. The model provided internal dosimetry predictions for a benchmark dose analysis of hindlimb weakness in rats that combined dermal, gavage and dietary studies into a single internal dose-response model with area-under-the-curve (AUC) for plasma PT, the toxic moiety in the rat, as the internal dose metric. This PBPK model has predictive validity for calculating internal doses of PT and/or [14C]PT equivalents from different routes of exposure in the rat.


Assuntos
Anti-Infecciosos/farmacocinética , Compostos Organometálicos/farmacocinética , Piridinas/farmacocinética , Absorção Fisiológica , Animais , Relação Dose-Resposta a Droga , Feminino , Ratos , Pele/metabolismo
8.
Environ Sci Technol ; 53(21): 12556-12564, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31557437

RESUMO

Effects of dietary P level on the oral bioavailability of Pb present in soil were examined in a mouse model. Adult female C57BL/6 mice had free access to AIN-93G purified rodent diet amended with Pb as a soluble salt, Pb acetate, or in a soil matrix (NIST SRM 2710a). In these studies, the basal diet contained P at a nutritionally sufficient level (0.3% w/w) and the modified diets contained P at a lower (0.15%) or a higher (1.2%) level. For either dietary Pb source (Pb acetate or NIST SRM 2710a), low dietary P level markedly increased accumulation of Pb in bone, blood, and kidney. Tissue Pb levels in mice fed a high P in diet were not different from mice fed the basal P diet. Dietary P and Pb interacted to affect body weight change and feed efficiency in mice. The relative contribution of different Pb species in diet and feces was also affected by dietary P level. Differences in Pb species between diet and feces indicated that transformation of Pb species can occur during gastrointestinal tract transit. These interactions between Pb and P that alter Pb speciation may be important determinants of the bioavailability of Pb ingested in soil.


Assuntos
Poluentes do Solo , Solo , Animais , Disponibilidade Biológica , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos
9.
J Toxicol Environ Health A ; 82(23-24): 1187-1198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31893984

RESUMO

Decreasing renal glomerular filtration rate (GFR) in association with increasing blood cadmium levels was reported in epidemiological studies of general populations. Dependence of cadmium clearance on GFR has implications for interpreting causation in these studies. Associations between cadmium clearance and creatinine clearance, a metric of GFR, were evaluated in a sample of the U.S. population. Blood to urine cadmium clearance and serum creatinine clearance were estimated in approximately 6000 individuals included in the National Health and Nutrition Examination Survey (NHANES 2009-2016). Linear regression models explained approximately 45% of variance in cadmium clearance in adults, with 74% of the explained variance attributed to creatinine clearance and 25% explained by age. In adolescents (12-<20 years), linear regression models explained 55% of variance in cadmium clearance with >99% of the explained variance attributed to creatinine clearance. The models predicted that halving creatinine clearance would result in a 40% decrease in cadmium clearance and a 20% rise in blood cadmium. Dependence of cadmium clearance on GFR has implications for assigning causation to studies in which increasing blood cadmium levels have been associated with increasing risk of low GFR. Statistical associations between blood cadmium and low GFR, such as elevated odds ratios in upper percentile strata of populations, may be partially a consequence of lower cadmium clearance in association with low GFR that is reverse causation.


Assuntos
Cádmio/urina , Creatinina/urina , Taxa de Filtração Glomerular , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Creatinina/sangue , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Estados Unidos , Adulto Jovem
10.
J Toxicol Environ Health A ; 82(5): 379-382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30983525

RESUMO

Blood lead (Pb) clearance (CbPb) and serum creatinine clearance (CsCr), a metric of glomerular filtration rate (GFR), were estimated in approximately 7,600 subjects from the NHANES (2009-2016). Median CbPb in adults was 0.04 L/day (5th-95th percentile range: 0.01-0.12). Linear regression models explained approximately 68% of variance in CbPb in adults, with >98% of explained variance attributed to CsCr. These results provide an improved quantitative understanding of the possible effects of reverse causality in the interpretation of studies of associations between blood Pb and decrements in GFR.


Assuntos
Taxa de Filtração Glomerular , Chumbo/urina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Chumbo/sangue , Masculino , Pessoa de Meia-Idade , Estados Unidos , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-29553912

RESUMO

Arsenic (As) is the most frequently occurring contaminant on the priority list of hazardous substances, which lists substances of greatest public health concern to people living at or near U.S. National Priorities List site. Accurate assessment of human health risks from exposure to As-contaminated soils depends on estimating its bioavailability, defined as the fraction of ingested As absorbed across the gastrointestinal barrier and available for systemic distribution and metabolism. Arsenic bioavailability varies among soils and is influenced by site-specific soil physical and chemical characteristics and internal biological factors. This review describes the state-of-the science that supports our understanding of oral bioavailability of soil As, the methods that are currently being explored for estimating soil As relative bioavailability (RBA), and future research areas that could improve our prediction of the oral RBA of soil As in humans. The following topics are addressed: (1) As soil geochemistry; (2) As toxicology; (3) in vivo models for estimating As RBA; (4) in vitro bioaccessibility methods; and (5) conclusions and research needs.


Assuntos
Arsênio/metabolismo , Técnicas In Vitro/métodos , Medição de Risco/métodos , Poluentes do Solo/metabolismo , Arsênio/farmacocinética , Disponibilidade Biológica , Humanos , Solo/química , Poluentes do Solo/farmacocinética
12.
Environ Sci Technol ; 52(23): 13908-13913, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30358995

RESUMO

Effects of different treatments on the bioavailability of lead (Pb) in soil from a smelter emission contaminated site in Joplin, Missouri, were evaluated in a mouse model. Similar estimates of relative bioavailability for Pb in untreated or treated soil were obtained in mice and in the well-established juvenile swine model. In the mouse model, treatments that used phosphate (phosphoric acid or triple superphosphate) combined with iron oxide or biosolids compost significantly reduced soil Pb bioavailability. Notably, effects of these remediation procedures were persistent, given that up to 16 years had elapsed between soil treatment and sample collection. Remediation of soils was associated with changes in Pb species present in soil. Differences in Pb species in ingested soil and in feces from treated mice indicated that changes in Pb speciation occurred during transit through the gastrointestinal tract. Use of the mouse model facilitates evaluation of remediation procedures and allows monitoring of the performance of procedures under laboratory and field conditions.


Assuntos
Poluentes do Solo , Solo , Animais , Disponibilidade Biológica , Camundongos , Missouri , Fosfatos , Suínos
13.
J Toxicol Environ Health A ; 80(2): 69-90, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28085645

RESUMO

The broad-spectrum antimicrobial zinc pyrithione (ZnPT) is used in numerous products ranging from in-can preservative/mildicide in paints to antidandruff shampoo. Although products containing ZnPT have a long history of safe use, regulatory agencies routinely set limits of exposure based upon toxicological considerations. The objective of this study was to create a physiologically based pharmacokinetic (PBPK) model for ZnPT in the rat for improving dose-response analysis of ZnPT-induced toxicity, reversible hindlimb weakness, the endpoint that has been used as the basis for ZnPT risk assessments. A rat oral PBPK model was developed that includes compartments for plasma, liver, kidneys, muscle, brain, and rapidly and slowly perfused tissues. Pyrithione metabolism to 2-(methylsulfonyl)pyridine (MSP) and glucuronide conjugates was incorporated into the model. The model was parameterized and optimized based upon data from single-dose intravenous (iv) and oral gavage pharmacokinetic studies of radiolabeled pyrithione ([14C]PT) administered as zinc [14C]-pyrithione (Zn-[14C]PT) to adult female rats. It was further evaluated and refined using data from repeated, multidose oral gavage and dietary studies of Zn[14C]PT in the adult female rat that included measurements of plasma PT concentration, the putative toxic species. The model replicated the observed short-term elimination kinetics of PT in plasma and [14C]PT in whole blood following single doses and longer term temporal patterns of plasma and blood concentrations during repeated dosing schedules. The model also accounted for production and rapid elimination of S-glucuronide conjugates (SG) of 2-pyridinethiol and 2-pyridinethiol-1-oxide in urine, as well as production and slower elimination of MSP, the major [14C]PT species in blood within several hours following administration of ZnPT. The model provided internal dosimetry predictions for a benchmark dose (BMD) analysis of hindlimb weakness in rats, and was used to combine gavage and dietary studies into a single internal dose-response model with area under the curve (AUC) for plasma PT as the internal dose metric. This PBPK model has predictive validity for calculating internal doses of PT and/or [14C]PT from different routes of exposure in the rat.


Assuntos
Anti-Infecciosos/farmacocinética , Compostos Organometálicos/farmacocinética , Piridinas/farmacocinética , Animais , Relação Dose-Resposta a Droga , Feminino , Modelos Biológicos , Ratos
14.
J Toxicol Environ Health A ; 79(24): 1179-1182, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27767405

RESUMO

Lead (Pb) in soil is an important exposure source for children. Thus, determining bioavailability of Pb in soil is critical in evaluating risk and selecting appropriate strategies to minimize exposure. A mouse model was developed to estimate relative bioavailability of Pb in NIST SRM 2710a (Montana 1 Soil). Based on Pb levels in tissues, the mean relative bioavailability of this metal in this soil was 0.5. Estimates of relative bioavailabilities derived from mouse compared favorably with those obtained in juvenile swine. The mouse model is thus an efficient and inexpensive method to obtain estimates of relative bioavailability of soil Pb.


Assuntos
Chumbo/farmacocinética , Poluentes do Solo/farmacocinética , Animais , Disponibilidade Biológica , Monitoramento Ambiental , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Medição de Risco , Distribuição Tecidual
15.
J Toxicol Environ Health A ; 79(4): 165-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27029599

RESUMO

Several investigations have been conducted to develop in vitro bioaccessibility (IVBA) assays that reliably predict in vivo oral relative bioavailability (RBA) of arsenic (As). This study describes a meta-regression model relating soil As RBA and IVBA that is based upon data combined from previous investigations that examined the relationship between As IVBA and RBA when IVBA was determined using an extraction of soil in 0.4 M glycine at pH 1.5. Data used to develop the model included paired IVBA and RBA estimates for 83 soils from various types of sites such as mining, smelting, and pesticide or herbicide application. The following linear regression model accounted for 87% of the observed variance in RBA (R(2) = .87): RBA(%) = 0.79 × IVBA(%) + 3. This regression model is more robust than previously reported models because it includes a larger number of soil samples, and also accounts for variability in RBA and IVBA measurements made on samples collected from sites contaminated with different As sources and conducted in different labs that have utilized different experimental models for estimating RBA.


Assuntos
Arsênio/farmacocinética , Bioensaio/métodos , Modelos Lineares , Modelos Biológicos , Poluentes do Solo/farmacocinética , Disponibilidade Biológica
16.
Artigo em Inglês | MEDLINE | ID: mdl-24151967

RESUMO

Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feasible for addressing widely disseminated contamination in populated areas often encountered in urban environments. The rationale for amending soils with phosphate is that phosphate will promote formation of highly insoluble Pb species (e.g., pyromorphite minerals) in soil, which will remain insoluble after ingestion and, therefore, inaccessible to absorption mechanisms in the gastrointestinal tract (GIT). Amending soil with phosphate might potentially be used in combination with other methods that reduce contact with or migration of contaminated soils, such as covering the soil with a green cap such as sod, clean soil with mulch, raised garden beds, or gravel. These remediation strategies may be less expensive and far less disruptive than excavation and removal of soil. This review evaluates evidence for efficacy of phosphate amendments for decreasing soil Pb bioavailability. Evidence is reviewed for (1) physical and chemical interactions of Pb and phosphate that would be expected to influence bioavailability, (2) effects of phosphate amendments on soil Pb bioaccessibility (i.e., predicted solubility of Pb in the GIT), and (3) results of bioavailability bioassays of amended soils conducted in humans and animal models. Practical implementation issues, such as criteria and methods for evaluating efficacy, and potential effects of phosphate on mobility and bioavailability of co-contaminants in soil are also discussed.


Assuntos
Recuperação e Remediação Ambiental , Chumbo/química , Fosfatos/química , Poluentes do Solo/química , Solo/química , Animais , Disponibilidade Biológica , Monitoramento Ambiental , Humanos , Chumbo/farmacocinética , Modelos Animais , Poluentes do Solo/farmacocinética , Solubilidade
17.
J Toxicol Environ Health A ; 76(13): 815-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24028666

RESUMO

A mouse assay for measuring the relative bioavailability (RBA) of arsenic (As) in soil was developed. In this study, results are presented of RBA assays of 16 soils, including multiple assays of the same soils, which provide a quantitative assessment of reproducibility of mouse assay results, as well as a comparison of results from the mouse assay with results from a swine and monkey assay applied to the same test soils. The mouse assay is highly reproducible; three repeated assays on the same soils yielded RBA estimates that ranged from 1 to 3% of the group mean. The mouse, monkey, and swine models yielded similar results for some, but not all, test materials. RBA estimates for identical soils (nine test soils and three standard reference materials [SRM]) assayed in mice and swine were significantly correlated (r = 0.70). Swine RBA estimates for 6 of the 12 test materials were higher than those from the mouse assay. RBA estimates for three standard reference materials (SRM) were not statistically different (mouse/swine ratio ranged from 0.86-1). When four test soils from the same orchard were assessed in the mouse, monkey, and swine assays, the mean soil As RBA were not statistically different. Mouse and swine models predicted similar steady state urinary excretion fractions (UEF) for As of 62 and 74%, respectively, during repeated ingestion doses of sodium arsenate, the water-soluble As form used as the reference in the calculation of RBA. In the mouse assay, the UEF for water soluble As(V) (sodium arsenate) and As(III) (sodium [meta] arsenite) were 62% and 66%, respectively, suggesting similar absolute bioavailabilities for the two As species. The mouse assay can serve as a highly cost-effective alternative or supplement to monkey and swine assays for improving As risk assessments by providing site-specific assessments of RBA of As in soils.


Assuntos
Arseniatos/farmacocinética , Arsenitos/farmacocinética , Bioensaio/métodos , Compostos de Sódio/farmacocinética , Poluentes do Solo/farmacocinética , Animais , Arseniatos/análise , Arsenitos/análise , Bioensaio/economia , Monitoramento Ambiental/economia , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Estudos de Viabilidade , Feminino , Haplorrinos , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Medição de Risco , Compostos de Sódio/análise , Solo/química , Poluentes do Solo/análise , Especificidade da Espécie , Suínos
18.
J Expo Sci Environ Epidemiol ; 33(2): 187-197, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36123530

RESUMO

BACKGROUND: The Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK model) was developed by the U.S. Environmental Protection Agency to support assessments of health risks to children from exposures to lead (Pb). OBJECTIVE: This study evaluated performance of IEUBK model (v2.0) as it would be typically applied at Superfund sites to predict blood Pb levels (BLLs) in populations of children. METHODS: The model was evaluated by comparing model predictions of BLLs to 1144 observed BLLs in a population of children at the Bunker Hill Superfund Site for which there were paired estimates of environmental Pb concentrations. RESULTS: Predicted population geometric mean (GM) BLLs (GM: 3.4 µg/dL, 95% CI: 3.3, 3.5) were within 0.3 µg/dL of observed (GM: 3.6 µg/dL, 95% CI: 3.5, 3.8). The model predicted the observed age trend in GM BLLs and explained ~90% of the variance in the observed age-stratified GM BLLs. The mean predicted probability of exceeding 5 µg/dL (P5) was 27% (95% CI: 24, 29) and observed P5 was 32% (95% CI: 29, 35), a difference of 5%. Differences between geographic area stratified mean P5 (predicted minus observed) ranged from -11 to 14% (mean difference: 2.3%). SIGNIFICANCE: Although the more general applicability of these findings to other populations remains to be determined in future studies, our results support applications of the IEUBK model (v2.0) for informing risk-based decisions regarding remediation of soils and mitigation of exposures at Superfund sites where the majority of the exposure unit GM BLLs are expected to be ≤5 µg/dL and where it is desired to limit the predicted probability of exceeding 5 µg/dL to <5%.


Assuntos
Exposição Ambiental , Intoxicação por Chumbo , Estados Unidos , Criança , Humanos , Exposição Ambiental/análise , Chumbo , United States Environmental Protection Agency
19.
Sci Total Environ ; 837: 155797, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561906

RESUMO

The relationship between ingestion of diets amended with a Pb-contaminated soil and the composition of the fecal microbiome was examined in a mouse model. Mice consumed diets amended with a Pb-contaminated soil in its native (untreated) state or after treatment for remediation with phosphoric acid or triple superphosphate alone or in combination with iron-waste material or biosolids compost. Subacute dietary exposure of mice receiving treated soil resulted in modulation of the fecal intestinal flora, which coincided with reduced relative Pb bioavailability in the bone, blood and kidney and differences in Pb speciation compared to untreated soil. Shifts in the relative abundance of several phyla including Verrucomicrobia, Tenericutes, Firmicutes, Proteobacteria, and TM7 (Candidatus Saccharibacteria) were observed. Because the phyla persist in the presence of Pb, it is probable that they are resistant to Pb. This may enable members of the phyla to bind and limit Pb uptake in the intestine. Families Ruminococcaceae, Lachnospiraceae, Erysipelotrichaceae, Verrucomicrobiaceae, Prevotellaceae, Lactobacilaceae, and Bacteroidaceae, which have been linked to health or disease, also were modulated. This study is the first to explore the relationship between the murine fecal microbiome and ingested Pb contaminated soils treated with different remediation options designed to reduce bioavailability. Identifying commonalities in the microbiome that are correlated with more positive health outcomes may serve as biomarkers to assist in the selection of remediation approaches that are more effective and pose less risk.


Assuntos
Microbiota , Poluentes do Solo , Animais , Disponibilidade Biológica , Ingestão de Alimentos , Chumbo/toxicidade , Camundongos , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
20.
J Agric Food Chem ; 68(9): 2615-2622, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027133

RESUMO

Hand-to-mouth activity in children can be an important route for ingestion of soil and dust contaminated with inorganic arsenic. Estimating the relative bioavailability of arsenic present in these media is a critical element in assessing the risks associated with aggregate exposure to this toxic metalloid during their early life. Here, we evaluated the performance of a mouse assay for arsenic bioavailability in two laboratories using a suite of 10 soils. This approach allowed us to examine both intralaboratory and interlaboratory variations in assay performance. Use of a single vendor for preparation of all amended test diets and of a single laboratory for arsenic analysis of samples generated in the participating laboratories minimized contributions of these potential sources of variability in assay performance. Intralaboratory assay data showed that food and water intake and cumulative urine and feces production remained stable over several years. The stability of these measurements accounted for the reproducibility of estimates of arsenic bioavailability obtained from repeated intralaboratory assays using sodium arsenate or soils as the test material. Interlaboratory comparisons found that estimates of variables used to evaluate assay performance (recovery and urinary excretion factor) were similar in the two laboratories. For all soils, estimates of arsenic relative bioavailability obtained in the two laboratories were highly correlated (r2 = 0.94 and slope = 0.9) in a linear regression model. Overall, these findings show that this mouse assay for arsenic bioavailability provides reproducible estimates using a variety of test soils. This robust model may be adaptable for use in other laboratory settings.


Assuntos
Arsênio/metabolismo , Poluentes do Solo/metabolismo , Animais , Arsênio/química , Arsênio/urina , Disponibilidade Biológica , Fezes/química , Feminino , Laboratórios , Camundongos , Camundongos Endogâmicos C57BL , Solo/química , Poluentes do Solo/química , Poluentes do Solo/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA