Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 12: 105, 2014 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-24766737

RESUMO

BACKGROUND: Shaoyao decoction (SYD) is a traditional Chinese medicine prescription formulated by Liu Wan-Su, a master of traditional Chinese medicine in Jin-Yuan Dynasty. SYD is effective in treating ulcerative colitis. Paeonol, a component of SYD, inhibits colorectal cancer (CRC) cell proliferation and induces CRC cell apoptosis. In this study, azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated CRC (caCRC) model and CRC cell lines were used to examine the effects of SYD on CRC in vivo and in vitro. METHODS: A translational medicine strategy based on phytomics quality control was adopted. Liquid chromatography was employed for the chemical characterization and chemical fingerprinting of SYD. Protein expression and macrophage existence were determined by immunohistochemistry and western blot. Serum cytokines were quantified by Luminex assay. RESULTS: AOM/DSS-induced caCRC phenotypically resembled human caCRC. SYD significantly increased the survival rate of the mice, ameliorated the general well-being of the mice, and reduced the incidence and multiplicity of colonic neoplasms. SYD inhibited epithelial-mesenchymal transition (EMT), as indicated by upregulated epithelia cadherin and downregulated neuronal cadherin, fibronectin, vimentin, and transcription factor Snail. SYD reduced the expression levels of serum interleukin 1ß, interleukin-6, tumor necrosis factor α, tumor-associated macrophages, and p65. These results showed that SYD can attenuate proinflammatory cytokines and inhibit EMT. CONCLUSIONS: SYD ameliorates caCRC by suppressing inflammation and inhibiting EMT. SYD might be an alternative therapy for caCRC.


Assuntos
Colite/complicações , Neoplasias Colorretais/prevenção & controle , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Acetofenonas , Animais , Western Blotting , Neoplasias Colorretais/complicações , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Zhongguo Zhong Yao Za Zhi ; 39(3): 507-10, 2014 Feb.
Artigo em Zh | MEDLINE | ID: mdl-24946557

RESUMO

OBJECTIVE: To investigate the effect of curcumin (Cur) on radiosensitivity of nasopharyngeal carcinoma cell CNE-2 and its mechanism. METHOD: The effect of curcumin on radiosensitivity was determined by the clone formation assay. The cell survival curve was fitted by Graph prism 6. 0. The changes in cell cycle were analyzed by flow cytometry (FCM). The differential expression of long non-coding RNA was detected by gene chip technology. Part of differentially expressed genes was verified by Real-time PCR. RESULT: After 10 micro mol L-1 Cur had worked for 24 h, its sensitization enhancement ratio was 1. 03, indicating that low concentration of curcumin could increase the radiosensitivity of nasopharyngeal carcinoma cells; FCM displayed a significant increase of G2 phase cells and significant decrease of S phase cells in the Cur combined radiation group. In the Cur group, the GUCY2GP, H2BFXP, LINC00623 IncRNA were significantly up-regulated and ZRANB2-AS2 LOC100506835, FLJ36000 IncRNA were significantly down-regulated. CONCLUSION: Cur has radiosensitizing effect on human nasopharyngeal carcinoma CNE-2 cells. Its mechanism may be related to the changes in the cell cycle distribution and the expression of long non-coding IncRNA.


Assuntos
Curcumina/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , RNA Longo não Codificante/genética
3.
Int Immunopharmacol ; 128: 111529, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244516

RESUMO

BACKGROUND: Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) plays a crucial role in DNA base excision repair, cell apoptosis, cell signaling, and the regulation of transcription factors through redox modulation and the control of reactive oxygen species (ROS). However, the connection between APE1 and acute liver injury (ALI) remains enigmatic. This study aims to unravel the molecular mechanisms underlying ALI and shed light on the role of APE1 in this context. METHOD: We induced acute liver injury (ALI) in mice by lipopolysaccharide/D-galactosamine (LPS/GalN) and intervened with the APE1 inhibitor E3330. We examined the expression of APE1 in ALI mice and ALI patient tissues after E3330 intervention, Additionally, we measured hepatic oxidative stress, ferroptosis, and autophagy marker proteins and genes. In establishing an AML-12 liver cell injury model, we utilized the Nrf2 activator tert-butylhydroquinone (TBHQ) as an intervention and examined APE1, Nrf2, ferroptosis-related proteins, and autophagy marker proteins and mRNA. RESULTS: Both ALI patients and ALI mice exhibited reduced APE1 expression levels. After E3330 intervention, there was a significant exacerbation of liver injury, oxidative stress, and a reduction in the expression of proteins, including GPX4, X-CT, ATG3, ATG5, and LC3 (LC3I/II). Consistent results were also observed in AML-12 cells. With TBHQ intervention, Nrf2 expression increased, along with the expression of proteins associated with iron death and autophagy. Mechanistically, APE1 activation regulates Nrf2 to inhibit ferroptosis and promote autophagy in hepatocytes. CONCLUSION: The data suggest that APE1 is a pivotal player in ALI, closely linked to its regulation of Nrf2. Strategies involving APE1 activation to modulate Nrf2, thereby inhibiting hepatocyte ferroptosis and promoting autophagy, may represent innovative therapeutic approaches for ALI. Additionally, tert-butylhydroquinone (TBHQ) holds significant promise in the treatment of acute liver injury.


Assuntos
Benzoquinonas , Ferroptose , Hidroquinonas , Leucemia Mieloide Aguda , Propionatos , Animais , Humanos , Camundongos , Autofagia/genética , Hepatócitos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
4.
Heliyon ; 10(8): e29093, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665562

RESUMO

Objective: Shenshuai Yingyang Jiaonang (SSYYJN), a traditional Chinese medicine formula, can ameliorate muscle atrophy associated with chronic kidney disease (CKD). However, its mechanisms of action remain unclear. This study is to investigate the molecular mechanisms involved in the effects of SSYYJN in ameliorating muscle atrophy associated with CKD in rats. Methods: The chemical compounds of SSYYJN were identified by UPLC-Q-Orbitrap HRMS. Considering the dose-response relationship of the identified compounds, male SD rats were randomly divided into Sham, Model, SSYYJN, and α-Keto Acid (KA) groups. Subsequently, we assessed the therapeutic and anti-ferroptotic effects of SSYYJN. Network pharmacology studies were used to predict the molecular mechanism of SSYYJN on ferroptosis and were further verified for accuracy. Results: A total of 42 active compounds were identified from SSYYJN. SSYYJN alleviated muscle atrophy caused by CKD, as evidenced by changes in body weight, serum biochemical indices, mass and histopathology of the skeletal muscle, and the levels of MuRF1. SSYYJN reduced the levels of iron, MDA, and ROS, increased the levels of GSH, NAPDH, and Gpx4. Network pharmacology analysis indicated that SSYYJN exerted anti-ferroptotic effects that were closely related to the HIF-1α signaling pathway. Molecular protein and genetic test results showed that SSYYJN increased HIF-1α protein and increased SLC7A11. Conclusions: SSYYJN attenuates muscle atrophy in CKD by inhibiting ferroptosis through the activation of the HIF-1α/SLC7A11 pathway and might be a promising traditional Chinese medicine for muscle atrophy in CKD.

5.
Chin Med ; 19(1): 31, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403669

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) represents a microvascular complication of diabetes mellitus. Shenkang Pills (SKP), a traditional Chinese medicine formula, has been widely used in the treatment of DKD and has obvious antioxidant effect. Ferroptosis, a novel mode of cell death due to iron overload, has been shown to be associated with DKD. Nevertheless, the precise effects and underlying mechanisms of SKP on ferroptosis in diabetic kidney disease remain unclear. METHODS: The active components of SKP were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Protein-protein interaction (PPI) network and Herb-ingredient-targets gene network were constructed using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted utilizing the Metascape system database. Additionally, an in vivo model of DKD induced by Streptozotocin (STZ) was established to further investigate and validate the possible mechanisms underlying the effectiveness of SKP. RESULTS: We retrieved 56 compounds and identified 223 targets of SKP through the TCMSP database. Key targets were ascertained using PPI network analysis. By constructing a Herb-Ingredient-Targets gene network, we isolated the primary active components in SKP that potentially counteract ferroptosis in diabetic kidney disease. KEGG pathway enrichment analysis suggested that SKP has the potential to alleviate ferroptosis through HIF signaling pathway, thereby mitigating renal injury in DKD. In animal experiments, fasting blood glucose, 24 h urine protein, urea nitrogen and serum creatine were measured. The results showed that SKP could improve DKD. Results from animal experiments were also confirmed the efficacy of SKP in alleviating renal fibrosis, oxidative stress and ferroptosis in DKD mice. These effects were accompanied by the significant reductions in renal tissue expression of HIF-1α and HO-1 proteins. The mRNA and immunohistochemistry results were the same as above. CONCLUSIONS: SKP potentially mitigating renal injury in DKD by subduing ferroptosis through the intricacies of the HIF-1α/HO-1 signaling pathway.

6.
Biomed Pharmacother ; 171: 116208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286036

RESUMO

Diabetic kidney disease (DKD) stands as a pressing health challenge, with mesangial cell fibrosis identified as a pivotal hallmark leading to glomerular sclerosis. Gaining a deeper grasp on the molecular dynamics behind this can potentially introduce groundbreaking therapeutic avenues. Recent revelations from studies on ROCK1-deficient mice, which displayed resilience against high-fat diet (HFD)-induced glomerulosclerosis and mitochondrial fragmentation, spurred our hypothesis regarding ROCK1's potential role in mesangial cell fibrosis. Subsequent rigorous experiments corroborated our theory, highlighting the critical role of ROCK1 in orchestrating mesangial cell proliferation and fibrosis, especially in high-glucose settings. Mechanistically, ROCK1 inhibition led to a notable hindrance in the high-glucose-triggered MAPK signaling pathway, particularly emphasizing the ROCK1/ERK/P38 axis. To translate this understanding into potential therapeutic interventions, we embarked on a comprehensive drug screening journey. Leveraging molecular modeling techniques, Myricetin surfaced as an efficacious inhibitor of ROCK1. Dose-dependent in vitro assays substantiated Myricetin's prowess in curtailing mesangial cell proliferation and fibrosis via ROCK1/ERK/P38 pathway. In vivo verifications paralleled these findings, with Myricetin treatment resulting in significant renal function enhancements and diminished DKD pathological markers, all pivoted around the ROCK1/ERK/P38 nexus. These findings not only deepen our comprehension of DKD molecular underpinnings but also elevate ROCK1 to the pedestal of a promising therapeutic beacon. Concurrently, Myricetin is spotlighted as a potent natural contender, heralding a new era in DKD therapeutic design.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Nefropatias Diabéticas/metabolismo , Flavonoides/farmacologia , Células Mesangiais/metabolismo , Glucose/metabolismo , Fibrose , Rim , Diabetes Mellitus/metabolismo
7.
Biochem Biophys Res Commun ; 432(4): 660-5, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23416081

RESUMO

Genetic alterations in nasopharyngeal carcinoma (NPC) have been reported in previous works. However, it remains unclear whether polymorphisms within the miRNA-target binding sites are associated with individual NPC risk. In this study, new experimental and computational approaches were developed to assess the polymorphism frequency distribution within the miRNA sites in NPC patients, and to explore its association with NPC risk. We focused on 220 single-nucleotide polymorphisms (SNPs) in the 3'-untranslated regions (3'UTRs) of 32 genes carrying putative miRNA-binding sites by specialized algorithms. A total of 9 candidate genes were selected for further investigation, which were reportedly overexpressed in NPC, including EGFR, COX2, CCNE1, hTERT, MMP2, MMP9, NF-κB VEGF, and WNT3. SNPs in 3'UTRs were genotyped by direct polymerase chain reaction sequencing of the genomic DNA of 24 cases and 24 controls. Then, EGFR rs884225, CCNE1 rs3218073, and MMP2 rs7201 were screened with large samples. Based on the analysis of a series of 167 NPC cases and 171 controls from Guangdong Province, statistically significant associations were found between NPC risk and variant genotypes of CCNE1 rs3218073 for TC+TT (OR=1.585; 95% CI=1.023-2.458; P=0.046) and for T-allele (OR=1.464; 95% CI=1.012-2.118; P=0.042). In addition, a significant association among rs3218073 genotype TC (OR=1.959, P=0.043), T-allele (OR=2.123, P=0.006), and primary tumor (T3-T4) was retrieved. Genotype TC (OR=1.959, P=0.043) and T-allele (OR=2.123, P=0.006) of rs3218073 were correlated with increased risk of higher NPC stage (III to IV). In support of the postulation that the 3'UTR SNP directly affected miRNA-binding site, luciferase reporter assay indicated that CCNE1 was a direct target of miR-151, and the rs3218073 T>C change resulted in altered regulation of CCNE1 expression. By contrast, no statistically significant association with NPC risk was found for MMP2 rs7201 and EGFR rs884225 polymorphisms (P>0.05). In conclusion, our data demonstrate that CCNE1 rs3218073 polymorphism located at miRNA-151 binding site is associated with NPC susceptibility and is correlated with NPC stage. These results suggest that CCNE1 rs3218073 polymorphism can be exploited as a novel biomarker for future NPC diagnosis and prognosis.


Assuntos
Regiões 3' não Traduzidas , Ciclina E/genética , Predisposição Genética para Doença , MicroRNAs/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Proteínas Oncogênicas/genética , Adulto , Sítios de Ligação/genética , Carcinoma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Estadiamento de Neoplasias , Polimorfismo de Nucleotídeo Único
8.
Front Pharmacol ; 14: 1098598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251312

RESUMO

Background: An increasing number of Chinese patent medicines (CPM) have been widely used in East Asian and North American countries, and the safety and efficacy of CPM have highly attracted public attention. However, it is difficult to supervise the authenticity of multiple biological ingredients within CPM based on microscopic inspection and physical and chemical detection. The raw materials may have similar characteristics of tissue structures and ergastic substances or similar chemical composition and contents when substitutes and/or adulterants are added. DNA molecular markers have been used to distinguish the biological ingredients within CPM based on conventional PCR assay. However, it was proved to be time- and labor-consuming and reagent-wasting, as multiple PCR amplification strategies were required for identifying the complex species composition within CPM. Here, we took the CPM (Danggui Buxue pill) as an example and aimed to establish a specific SNP-based multiplex PCR assay and simultaneously determine the authenticity of the two biological ingredients (Angelicae Sinensis Radix and Astragali Radix) within this CPM. Methods: We, respectively, designed the species-specific primers based on highly variable nrITS for discriminating Angelicae Sinensis Radix and Astragali Radix from their common substitutes and adulterants. The specificity of the primers was checked through conventional PCR assay and multiplex PCR assay. Furthermore, we used a handcrafted Danggui Buxue pill sample (DGBXP) to optimize annealing temperatures for the primers with multiplex PCR, and the sensitivity was also assessed. Finally, fourteen batches of commercial Danggui Buxue pills were used to verify the stability and practicability of the established multiplex PCR assay. Results: Two pairs of highly species-specific primers for amplifying Angelicae Sinensis Radix and Astragali Radix were screened, and our established multiplex PCR assay showed high specificity and sensitivity (lowest detection concentration: 4.0 × 10-3 ng/µL) at an optimal annealing temperature of 65°C. The method could simultaneously identify both biological ingredients within the Danggui Buxue pill. Conclusion: The specific SNP-based multiplex PCR provided a simple, time-, and labor-saving method for the simultaneous identification of the two biological ingredients within Danggui Buxue pills. This study was expected to provide a novel qualitative quality control strategy for CPM.

9.
Cell Host Microbe ; 31(5): 798-810.e7, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37054714

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disorder that has been associated with the gut microbiota. However, whether and how the gut microbiota plays a pathogenic role in RA remains unexplored. Here, we observed that Fusobacterium nucleatum is enriched in RA patients and positively associated with RA severity. F. nucleatum similarly aggravates arthritis in a mouse model of collagen-induced arthritis (CIA). F. nucleatum outer membrane vesicles (OMVs) containing the virulence determinant FadA translocate into the joints, triggering local inflammatory responses. Specifically, FadA acts on synovial macrophages, resulting in the activation of the Rab5a GTPase involved in vesicle trafficking and inflammatory pathways and YB-1, a key regulator of inflammatory mediators. OMVs containing FadA and heightened Rab5a-YB-1 expression were observed in RA patients compared with controls. These findings suggest a causal role of F. nucleatum in aggravating RA and provide promising therapeutic targets for clinically ameliorating RA.


Assuntos
Artrite Reumatoide , Fusobacterium nucleatum , Animais , Camundongos , Fusobacterium nucleatum/metabolismo , Fatores de Virulência/metabolismo
10.
Phytomedicine ; 103: 154234, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689903

RESUMO

BACKGROUND: The Modified Shenlingbaizhu Decoction (MSD) utilizes various phytomedicines has been applied to treat colorectal cancer (CRC). Colorectal cancer stem cells (CSCs) have proven to be tightly associated with CRC progression and metastasis. The mechanism of MSD's inhibitory effect on CSCs has not been determined. PURPOSE: To figure out how MSD inhibits the pluripotency of CSCs and impedes the EMT program. METHODS: The ingredients of MSD extracts were characterized by high-performance liquid chromatography (HPLC). BALB/c-nu mice were transplanted into EGFP labeled SW480 CRC cells and the tumor weight and volume were recorded before and after various doses of MSD treatment. The concentration of TGF-ß1 was quantified with an Enzyme-linked immunosorbent assay. To delineate the logical relationship between EMT and CSCs regulated by MSD, TGF-ß/Smad inhibitor and activator were adopted in tumor-bearing mice and diverse CRC cell lines. Cancer stem cell markers were analyzed by flow cytometry. In vitro analysis of cell motility and viability were done using CCK-8, wound healing, and invasion assay. Immunohistochemistry (IHC) and western blotting (WB) were used for detecting protein expression. The collected results were statistically analyzed with GraphPad Prism 8.0. RESULTS: MSD treatment significantly reduced the size of colorectal cancer tumors and lowered the serum content of TGF-ß1 in mice. Importantly, MSD markedly reduced the expression of pluripotent factors and depressed CD133+ stem cells in the tumor tissues. The TGF-ß/Smad inhibitor neutralized the EMT signaling and lowered the pluripotency by dephosphorylation of SMAD2/3. Similarly, MSD attenuated the pluripotency by limiting TGF-ß/Smad signaling-induced EMT in vivo. MSD inhibited colorectal cancer cell proliferation, migration, and invasion. CONCLUSIONS: MSD inhibits the growth of colorectal cancer. It dampens the pluripotency of CSCs by repressing the TGF-ß-induced EMT program.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Células-Tronco Neoplásicas , Células-Tronco Pluripotentes , Fator de Crescimento Transformador beta1 , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/sangue , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Medicamentos de Ervas Chinesas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fitoterapia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/sangue
11.
Chin J Integr Med ; 26(10): 736-744, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31768871

RESUMO

OBJECTIVE: To investigate the phenolic composition, antioxidant properties, and hepatoprotective mechanisms of polyphenols from green tea extract (GTP) in carbon tetrachloride (CCl4)-induced acute liver injury mouse model. METHODS: High-performance liquid chromatography was used to analyze the chemical composition of the extract. Antioxidant activity of GTP was assessed by O2∙-, OH∙, DPPH∙, and ferric-reducing antioxidant power (FRAP) assay in vitro. Sixty Kunming mice were divided into 6 groups including control, model, low-, medium-, and high-doses GTP (200, 400, 800 mg/kg) and vitamin E (250 mg/kg) groups, 10 in each group. GTP and vitamin E were administered at a level of abovementioned doses twice per day for 7 days prior to exposure to a single injection of CCl4. Hepatoprotective effects of GTP were evaluated in a CCl4-induced mouse model of acute liver injury, using commercial enzyme linked immunosorbent assay kits, histopathological observation, terminal deoxynucleotidyl transferase-mediated dUTPNick-end labeling (TUNEL) assay and Western blot. RESULTS: GTP contained 98.56 µg gallic acid equivalents per milligram extract total polyphenols, including epicatechingallate, epigallocatechin gallate, epicatechin, and epigallocatechin. Compared with the model group, low-, medium-, or high doses GTP significantly decreased serum levels of alanine aminotransferase and aspartate transaminase (P<0.01). Histopathological observation confirmed that pretreatment of GTP prevented swelling and necrosis in CCl4-exposed hepatocytes. Hepatoprotective effects of low-, medium-, and high-dose GTP were associated with eliminating free radicals and improving superoxide dismutase, catalase, and glutathione peroxidase activity in the liver. Additionally, low-, medium-, and high-dose GTP decreased cell apoptosis in the CCl4-exposed liver (P<0.01). Phosphorylated nuclear factor kappa-B (NF-κB), p53, Bcl-2 associated x protein/B-cell lymphoma/leukemia-2 gene, cytochrome C, and cleaved caspase-3 levels were downregulated compared with the model group (P<0.01). CONCLUSION: GTP achieves hepatoprotective effects by improving hepatic antioxidant status and preventing cell apoptosis through caspase-3-dependent signaling pathways.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Chá , Animais , Antioxidantes/química , Biomarcadores/sangue , Tetracloreto de Carbono/toxicidade , Caspase 3/metabolismo , China , Modelos Animais de Doenças , Masculino , Camundongos , Extratos Vegetais/química , Polifenóis/química
12.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue ; 21(7): 387-9, 2009 Jul.
Artigo em Zh | MEDLINE | ID: mdl-19615126

RESUMO

OBJECTIVE: To investigate the expression and regulatory effect of signal transducer and activator of transcription 1 (STAT1) in acute lung injury (ALI) induced by endotoxin. METHODS: ALI model was induced by intravenous lipopolysaccharide (LPS). Wistar rats were randomly divided into three groups, the control group, LPS group, dexamethasone (DEX) group. Each group was subdivided into five subgroups according to the time after administration of endotoxin (1, 2, 4, 8 and 16 hours), except the control group. Rats were given normal saline by gavage in control group and LPS group, and 0.135 mg/kg DEX in DEX group for 5 days. Six rats were sacrificed at different time points after normal saline or LPS injection. The lungs were harvested for microscopic examination. Western blotting was used to examine protein expression of STAT1 in lung tissue. RESULTS: In LPS group the levels of STAT1 began to increase at 1 hour, reaching the peak value at 4 hours, then declined gradually. There was a significant difference at 2, 4, 8 hours (all P<0.01). The expression trend for STAT1 was similar between DEX and LPS groups, but the levels of STAT1 were significantly decreased in DEX group at 2, 4, 8 hours compared with the LPS group (all P<0.05). CONCLUSION: There is abnormal expression of STAT1 in the lung tissue of ALI. The abnormal STAT1 expression takes part in the inflammatory formation of lung tissue in ALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Pulmão/metabolismo , Fator de Transcrição STAT1/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Dexametasona/farmacologia , Modelos Animais de Doenças , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Ratos , Ratos Wistar
13.
Ultrason Sonochem ; 34: 448-457, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773267

RESUMO

We have fabricated a negative-charged nanoparticle (Heparin-Folate-Tat-Taxol NP, H-F-Tat-T NP) with dual ligands, tumor targeting ligand folate and cell-penetrating peptide Tat, to deliver taxol presenting great anticancer activity for sensitive cancer cells, while it fails to overcome multidrug resistance (MDR) in MCF-7/T cells (taxol-resistant breast cancer cells). Ultrasound (US) can increase the sensitivity of positive-charged NPs thereby making it possible to reverse MDR through inducing NPs' drug release. However, compared with the negative-charged NPs, positive-charged NPs may cause higher toxic effect. Hence, the combination of negative-charged NPs and US may be an efficient strategy for overcoming MDR. The conventional procedure to treat with NPs followed by US exposure possibly destruct multifunctional NPs resulting in its bioactivity inhibition. Herein, we have further improved the operating approach to eliminate US mechanical damage and keep the integrity of negative-charged NPs: cells are exposed to US with microbubbles (MBs) prior to the treatment of H-F-Tat-T NPs. Superior to the conventional method, US sonoporation affects the physiological property of cancer cells while preventing direct promotion of drug release from NPs. The results of the present study displayed that US in condition (1MHz, 10% duty cycle, duration of 80s, US intensity of 0.6W/cm2 and volume ratio of medium to MBs 20:1) combined with H-F-T-Tat-T NPs can achieve optimal reversal MDR effect in MCF-7/T cells. Mechanism study further disclosed that the individual effect of US was responsible for the enhancement of cell membrane permeability, inhibition of cell proliferation rate and down-regulation of MDR-related genes and proteins. Simultaneously, US sonoporation on resistant cancer cells indirectly increased the accumulation of NPs by inducing endosomal escape of negative-charged NPs. Taken together, the overcoming MDR ability for the combined strategy was achieved by the synergistic effect from individual function of NPs, physiological changes of resistant cancer cells and behavior changes of NPs caused by US.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Nanopartículas , Fenótipo , Ondas Ultrassônicas , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Endocitose , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7
14.
Oncotarget ; 8(49): 84782-84797, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156683

RESUMO

Background & Aims: San huang yin chi decoction(SHYCD) is derived from the yin chen hao decoction, a well-known and canonical Chinese medicine formula from the "Treatise on Febrile Diseases". Over the past decade, SHYCD has been used to treat and prevent the liver cirrhosis and liver failure. In the present study, we investigated the effects of SHYCD for acute on chronic liver failure(ACLF) and explored its potential mechanism. an ACLF rat model, which induced by carbon tetrachloride (CCl4) combined with D-galactosamine (D-GalN) and lipopolysaccharide(LPS), was used and confirmed by B-ultrasound analysis. Rats were randomly divided into control group, model group, SHYCD-H group, SHYCD-M group, SHYCD-L group, AGNHW group. Compared with the ACLF model group, High, medium, and low doses of SHYCD reduced ALT, AST, TBIL, NH3, IL-1ß, IL-6, and TNFα expression levels in the serum, Shorten PT and INR time,and increased Fbg content in the whole blood, increased survival rate of the rats, improved liver pathological changes. APE1 / Ref-1 was mainly expressed in the nucleus, but the nucleus and cytoplasm were co-expressed after hepatocyte injury. SHYCD significantly downregulated APE1/Ref-1 expression in the cytoplasm. Increased APE1/Ref-1, Bcl-2, reduced p53, caspase-3, Bax, and Cyt-c in the total protein. Base on the results, we conclused that High, medium, and low doses of SHYCD could be applied in prevention and treatment of ACLF, and dose-dependent. The possible mechanism is to promote the APE1 / Ref-1 from the cytoplasm to the nuclear transfer, regulation of p53 apoptosis signal pathway prevention and treatment of ACLF.

15.
Atherosclerosis ; 188(1): 84-94, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16300769

RESUMO

Low-density lipoprotein (LDL) inhibits endothelium-dependent vasorelaxation. The aim of this study was to determine whether pyridoxine supplementation improves indices of LDL-induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVEC) were incubated with native LDL (nLDL) from healthy subjects, oxidized LDL (oxLDL, formed by nLDL oxidation) or nLDL from type II diabetic patients (dLDL), in the absence or presence of pyridoxine; nitric oxide synthase (NOS) activity, cyclic GMP and expression of NOS isoforms were measured, as well as thiobarbituric acid reactive substances (TBARS) in HUVEC supernatants and amino acid concentrations in HUVEC lysates. All LDL species inhibited total NOS activity, whilst increasing the much smaller Ca2+-independent component of NOS activity, the effects of oxLDL being greatest and those of nLDL smallest; in accordance with these findings, NOS type 3 expression decreased and NOS type 2 expression increased, with a resultant decrease in bioactive nitric oxide (NO), in HUVEC treated with each LDL species, with the same rank order of potency. LDL species also increased TBARS in HUVEC supernatants as well as homocysteine concentrations in HUVEC lysates, nLDL < dLDL < oxLDL. Pyridoxine largely prevented all LDL-induced changes in NOS activity and isoform expression, as well as in TBARS and homocysteine. The findings suggest that pyridoxine prevents LDL-induced dysfunction of endothelial cell NO generation, most likely through its antioxidant effects as well as through its effects on cellular homocysteine metabolism. This has important potential therapeutic implications for cardiovascular disease prevention.


Assuntos
Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Lipoproteínas LDL/antagonistas & inibidores , Óxido Nítrico/biossíntese , Piridoxina/farmacologia , Complexo Vitamínico B/farmacologia , GMP Cíclico/análise , GMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Lipoproteínas LDL/farmacologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Cordão Umbilical/citologia
16.
Chin J Integr Med ; 22(10): 789-94, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26556710

RESUMO

Cancer immunoediting consists of three sequential phases: elimination, equilibrium, and escape. For colorectal adenoma-carcinoma sequence, the adenoma dysplastic progression may represent an equilibrium phase and the cancer stage as escape phase. Immune system eliminates transformed enterocytes by destroying them at first, sculpts them at the same time and selects the variants subsequently that are no longer recognized and insensitive to immune effectors, and finally induces immunosuppressive state within the tumor microenvironment that facilitates immune escape and tumor outgrowth. Immunosuppression and inflammation are the two crucial features of Pi (Spleen)-deficiency. Classic quotations, immune evidence and clinical observations suggest that Spleen (but not other organs) deficiency is the key pathogenesis of colorectal cancer (CRC) microenvironment. Weakness of old age, immunosuppressive cytokines from chronic inflammation, tumor-derived immunosuppressive factors and surrendered immune cells-regulatory T cells, myeloid-derived suppressor cells and tumor associated macrophages (TAMs) constitutes CRC microenvironment of Pi-deficiency. Furthermore, excess in superficiality, such as phlegm stagnation, blood stasis and toxin accumulation are induced by chronic inflammation on the basis of asthenia in origin, an immunosuppressive state. Great masters of Chinese medicine emphasize that strengthen Pi is the chief therapeutic principle for CRC which receives good therapeutic effects. So, Pi-deficiency based syndrome is the pivotal pathogenesis of tumor microenvironment. The immunosuppressive microenvironment facilitates immune escape which play an important role in the transition from adenoma to adenocarcinoma. There are some signs that strengthen Pi based treatment has potential capacity to ameliorate tumor environment. It might be a novel starting point to explore the mechanism of strengthen Pi based therapy in the prevention and treatment of CRC through regulation of tumor environment and immunoediting.


Assuntos
Neoplasias Colorretais/imunologia , Evasão da Resposta Imune , Baço/imunologia , Microambiente Tumoral/imunologia , Humanos , Terapia de Imunossupressão , Síndrome
17.
Int Immunopharmacol ; 34: 107-113, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26943728

RESUMO

Emodin, a major component of Rheum palmatum, has been reported to significantly protect neural tissue against apoptosis and autophagy. However, the effects and underlying mechanisms of action of emodin in muscle atrophy are still poorly defined. In this study, we investigated the protective effects and the underlying mechanisms by which emodin acts on tumor necrosis factor alpha (TNF-α)-induced apoptosis and autophagy in mouse C2C12 myoblasts. Emodin, at various concentrations, decreased TNF-α-induced apoptosis in C2C12 myoblasts, which were analyzed by Hoechst 33342 staining and annexin V/PI analysis. Emodin also inhibited the collapse of the mitochondrial membrane potential and the generation of reactive oxygen species in TNF-α-stimulated C2C12 myoblasts. Consistent with these results, the expression of Bcl-2 was increased, whereas the expression of Bax, cleaved-caspase 3 and cleaved-PARP was decreased after emodin treatment. These data demonstrate that emodin attenuated apoptosis in TNF-α-stimulated C2C12 myoblasts through mitochondrial signaling pathways. In addition, emodin inhibited autophagy in TNF-α-stimulated C2C12 myoblasts by suppressing the expression of LC3-II, Beclin-1 and Atg7. Emodin also resulted in the upregulation of the phosphorylated forms of Akt. Taken together, these results suggest that emodin inhibited apoptosis and autophagy in TNF-α-induced C2C12 myoblasts, possibly through the activation of phosphorylated Akt. Our findings suggest that emodin could be a potential therapeutic agent in the treatment of muscle atrophy.


Assuntos
Anti-Inflamatórios/farmacologia , Emodina/farmacologia , Atrofia Muscular/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mioblastos/imunologia , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Rheum/imunologia , Fator de Necrose Tumoral alfa/imunologia
18.
Oncol Lett ; 11(6): 3729-3734, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27313684

RESUMO

Curcumin (Cur) exhibits radiosensitization effects to a variety of malignant tumors. The present study investigates the radiosensitizing effect of Cur on nasopharyngeal carcinoma (NPC) cells and whether its mechanism is associated with microRNA-593 (miR-593) and multidrug resistance gene 1 (MDR1). A clonogenic assay was performed to measure the radiosensitizing effect. The expression of miR-593 and MDR1 was analyzed by quantitative polymerase chain reaction (qPCR) or western blot assay. A transplanted tumor model was established to identify the radiosensitizing effect in vivo. A luciferase-based reporter was constructed to evaluate the effect of direct binding of miR-593 to the putative target site on the 3' UTR of MDR1. The clonogenic assay showed that Cur enhanced the radiosensitivity of cells. Cur (100 mg/kg) combined with 4 Gy irradiation inhibited the growth of a transplanted tumor model in vivo, resulting in the higher inhibition ratio compared with the radiotherapy-alone group. These results demonstrated that Cur had a radiosensitizing effect on NPC cells in vivo and in vitro; Cur-mediated upregulation of miR-593 resulted in reduced MDR1 expression, which may promote radiosensitivity of NPC cells.

19.
Eur J Pharmacol ; 769: 79-85, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26522926

RESUMO

Sparstolonin B (SsnB), an isocoumarin compound isolated from the tubers of both Sparganium stoloniferum and Scirpus yagara, has been reported to have anti-inflammatory effects. However, whether SsnB has anti-inflammatory effects on LPS-stimulated 3T3-L1 adipocytes remains unclear. In this study, we investigated the effects of SsnB on adipocyte inflammation in 3T3-L1 adipocytes and anti-obesity properties in high fat diet (HFD)-induced obese rats. 3T3-L1 adipocytes were pretreated with SsnB 1h before LPS treatment. The expression of MCP-1, IL-6, TNF-α, and IL-10 were measured by qRT-PCR and ELISA. The expression of PPAR-γ, TLR4 and NF-κB were detected by western blotting. SsnB was administered to HFD-induced obese rats to confirm its effects in vivo. Our results showed that SsnB dose-dependently inhibited LPS-induced MCP-1, IL-6, and TNF-α production. SsnB was found to inhibit LPS-induced TLR4 expression and NF-κB activition. Furthermore, SsnB was found to activate PPAR-γ and the inhibitory effects of SsnB on MCP-1, IL-6, and TNF-α production can be reversed by PPAR-γ antagonist GW9662. In vivo, SsnB was found to reduce the body weight of rats fed with HFD. SsnB also inhibited the levels of serum triglyceride (TG) and cholesterol (TC) induced by HFD. In conclusion, the results suggested that SsnB could reduce HFD-induced obesity in rats and inhibited LPS-induced cytokines production in 3T3-L1 adipocytes by activating PPAR-γ.


Assuntos
Adipócitos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-10/biossíntese , Interleucina-10/genética , Interleucina-6/biossíntese , Interleucina-6/genética , Camundongos , NF-kappa B/metabolismo , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
20.
Nan Fang Yi Ke Da Xue Xue Bao ; 35(10): 1434-9, 2015 Oct.
Artigo em Zh | MEDLINE | ID: mdl-26547337

RESUMO

OBJECTIVE: To study the protective effect of Sanhuangyinchi Fang drug serum (SF) against hydrogen peroxide-mediated DNA oxidative damage in LO2 cells. METHODS: The LO2 cells were randomly divided into the control group, H(2)O(2) group, SF groups (5%, 10%, and 15%) and vitE group. The morphological features of the treated LO2 cells were observed under inverted microscope. The viability of the treated cells was assessed with CCK-8 method, and the activity of SOD, CAT and GSH-PX were detected biochemically. Reactive oxygen species (ROS) levels, the content of 8-OHdG, and DNA damage of the cells were evaluated by flow cytometry, ELISA, and Comet assay, respectively. RESULTS: Compared with H(2)O(2) group, the cells in SF groups (10% and 15%) and vitE group showed higher cell survival rate (P<0.05) and higher SOD, CAT, GSH-PX (P<0.05) and ROS scavenging activities (P<0.01) with markedly decreases the content of 8-OHdG (P<0.01) and reduced tailing ratio, tail length, tail moment and Olive tail moment (P<0.05). CONCLUSION: SF drug serum, especially at the concentration of 15%, can protect LO2 cells from H(2)O(2)-mediated DNA oxidative damage.


Assuntos
Dano ao DNA , Medicamentos de Ervas Chinesas/farmacologia , Estresse Oxidativo , Substâncias Protetoras/farmacologia , 8-Hidroxi-2'-Desoxiguanosina , Linhagem Celular , Ensaio Cometa , Desoxiguanosina/análogos & derivados , Humanos , Peróxido de Hidrogênio/toxicidade , Oxirredução , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA