Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 48, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243237

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) have repeatedly been related to COVID-19 severity and mortality. However, there is no consensus on their quantification, and there are scarce data on their evolution during the disease. We studied circulating NET markers in patients with COVID-19 throughout their hospitalization. METHODS: We prospectively included 93 patients (201 blood samples), evaluating the disease severity in 3 evolutionary phases (viral, early, and late inflammation). Of these, 72 had 180 samples in various phases. We also evaluated 55 controls with similar age, sex and comorbidities. We measured 4 NET markers in serum: cfDNA, CitH3, and MPO-DNA and NE-DNA complexes; as well as neutrophil-related cytokines IL-8 and G-CSF. RESULTS: The COVID-19 group had higher CitH3 (28.29 vs 20.29 pg/mL, p = 0.022), and cfDNA, MPO-DNA, and NE-DNA (7.87 vs 2.56 ng/mL; 0.80 vs 0.52 and 1.04 vs 0.72, respectively, p < 0.001 for all) than the controls throughout hospitalisation. cfDNA was the only NET marker clearly related to severity, and it remained higher in non-survivors during the 3 phases. Only cfDNA was an independent risk factor for mortality and need for intensive care. Neutrophil count, IL-8, and G-CSF were significantly related to severity. MPO-DNA and NE-DNA showed significant correlations (r: 0.483, p < 0.001), including all 3 phases and across all severity grades, and they only remained significantly higher on days 10-16 of evolution in those who died. Correlations among the other NET markers were lower than expected. CONCLUSIONS: The circulating biomarkers of NETs were present in patients with COVID-19 throughout hospitalization. cfDNA was associated with severity and mortality, but the three other markers showed little or no association with these outcomes. Neutrophil activity and neutrophil count were also associated with severity. MPO-DNA and NE-DNA better reflected NET formation. cfDNA appeared to be more associated with overall tissue damage; previous widespread use of this marker could have overestimated the relationship between NETs and severity. Currently, there are limitations to accurate NET markers measurement that make it difficult to assess its true role in COVID-19 pathogenesis.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Armadilhas Extracelulares , Humanos , Estudos Longitudinais , COVID-19/patologia , Interleucina-8 , Neutrófilos/patologia , Biomarcadores , DNA , Fator Estimulador de Colônias de Granulócitos
2.
Mol Ther ; 31(8): 2507-2523, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143324

RESUMO

Age-related and chemotherapy-induced bone loss depends on cellular senescence and the cell secretory phenotype. However, the factors secreted in the senescent microenvironment that contribute to bone loss remain elusive. Here, we report a central role for the inflammatory alternative complement system in skeletal bone loss. Through transcriptomic analysis of bone samples, we identified complement factor D, a rate-limiting factor of the alternative pathway of complement, which is among the most responsive factors to chemotherapy or estrogen deficiency. We show that osteoblasts and osteocytes are major inducers of complement activation, while monocytes and osteoclasts are their primary targets. Genetic deletion of C5ar1, the receptor of the anaphylatoxin C5a, or treatment with a C5AR1 inhibitor reduced monocyte chemotaxis and osteoclast differentiation. Moreover, genetic deficiency or inhibition of C5AR1 partially prevented bone loss and osteoclastogenesis upon chemotherapy or ovariectomy. Altogether, these lines of evidence support the idea that inhibition of alternative complement pathways may have some therapeutic benefit in osteopenic disorders.


Assuntos
Osteoclastos , Osteogênese , Feminino , Animais , Osteoclastos/metabolismo , Osteogênese/genética , Osteoblastos/metabolismo , Monócitos/metabolismo , Complemento C5a/genética , Complemento C5a/metabolismo
3.
Respir Res ; 24(1): 125, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147677

RESUMO

BACKGROUND: Severe COVID-19 entails a dysregulated immune response, most likely inflammation related to a lack of virus control. A better understanding of immune toxicity, immunosuppression balance, and COVID-19 assessments could help determine whether different clinical presentations are driven by specific types of immune responses. The progression of the immune response and tissular damage could predict outcomes and may help in the management of patients. METHODS: We collected 201 serum samples from 93 hospitalised patients classified as moderately, severely, and critically ill. We differentiated the viral, early inflammatory, and late inflammatory phases and included 72 patients with 180 samples in separate stages for longitudinal study and 55 controls. We studied selected cytokines, P-selectin, and the tissue damage markers lactate dehydrogenase (LDH) and cell-free DNA (cfDNA). RESULTS: TNF-α, IL-6, IL-8, and G-CSF were associated with severity and mortality, but only IL-6 increased since admission in the critical patients and non-survivors, correlating with damage markers. The lack of a significant decrease in IL-6 levels in the critical patients and non-survivors in the early inflammatory phase (a decreased presence in the other patients) suggests that these patients did not achieve viral control on days 10-16. For all patients, lactate dehydrogenase and cfDNA levels increased with severity, and cfDNA levels increased in the non-survivors from the first sample (p = 0.002) to the late inflammatory phase (p = 0.031). In the multivariate study, cfDNA was an independent risk factor for mortality and ICU admission. CONCLUSIONS: The distinct progression of IL-6 levels in the course of the disease, especially on days 10-16, was a good marker of progression to critical status and mortality and could guide the start of IL-6 blockade. cfDNA was an accurate marker of severity and mortality from admission and throughout COVID-19 progression.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Humanos , Interleucina-6 , Estudos Longitudinais , Hospitalização , Lactato Desidrogenases , Biomarcadores
4.
Int Endod J ; 56(4): 502-513, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36585930

RESUMO

AIM: To establish and fully characterize a new cell line from human stem cells of the apical papilla (SCAPs) through immortalization with an SV40 large T antigen. METHODOLOGY: Human SCAPs were isolated and transfected with an SV40 large T antigen and treated with puromycin to select the infected population. Expression of human mesenchymal surface markers CD73, CD90 and CD105 was assessed in the new cell line named Dental Stem Cells SV40 (DSCS) by flow cytometry at early and late passages. Cell contact inhibition and proliferation were also analysed. To evaluate trilineage differentiation, quantitative polymerase chain reaction and histological staining were performed. RESULTS: DSCS cell flow cytometry confirmed the expression of mesenchymal surface markers even in late passages [100% positive for CD73 and CD90 and 98.9% for CD105 at passage (P) 25]. Fewer than 0.5% were positive for haematopoietic cell markers (CD45 and CD34). DSCS cells also showed increased proliferation when compared to the primary culture after 48 h, with a doubling time of 23.46 h for DSCS cells and 40.31 h for SCAPs, and retained the capacity to grow for >45 passages (150 population doubling) and their spindle-shaped morphology. Trilineage differentiation potential was confirmed through histochemical staining and gene expression of the chondrogenic markers SOX9 and COL2A1, adipogenic markers CEBPA and LPL, and osteogenic markers COL1A1 and ALPL. CONCLUSIONS: The new cell line derived from human SCAPs has multipotency, retains its morphology and expression of mesenchymal surface markers and shows higher proliferative capacity even at late passages (P45). DSCS cells can be used for in vitro study of root development and to achieve a better understanding of the regenerative mechanisms.


Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Adipogenia/genética , Proliferação de Células , Células Cultivadas , Papila Dentária , Osteogênese/genética
5.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163828

RESUMO

Hyperactivation of the KEAP1-NRF2 axis is a common molecular trait in carcinomas from different origin. The transcriptional program induced by NRF2 involves antioxidant and metabolic genes that render cancer cells more capable of dealing with oxidative stress. The TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) is an important regulator of glycolysis and the pentose phosphate pathway that was described as a p53 response gene, yet TIGAR expression is detected in p53-null tumors. In this study we investigated the role of NRF2 in the regulation of TIGAR in human carcinoma cell lines. Exposure of carcinoma cells to electrophilic molecules or overexpression of NRF2 significantly increased expression of TIGAR, in parallel to the known NRF2 target genes NQO1 and G6PD. The same was observed in TP53KO cells, indicating that NRF2-mediated regulation of TIGAR is p53-independent. Accordingly, downregulation of NRF2 decreased the expression of TIGAR in carcinoma cell lines from different origin. As NRF2 is essential in the bone, we used mouse primary osteoblasts to corroborate our findings. The antioxidant response elements for NRF2 binding to the promoter of human and mouse TIGAR were described. This study provides the first evidence that NRF2 controls the expression of TIGAR at the transcriptional level.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/genética , Osteoblastos/citologia , Monoéster Fosfórico Hidrolases/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucosefosfato Desidrogenase/genética , Células HCT116 , Células HeLa , Humanos , Camundongos , NAD(P)H Desidrogenase (Quinona)/genética , Neoplasias/metabolismo , Osteoblastos/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas
6.
Mikrochim Acta ; 188(11): 398, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34716815

RESUMO

A simple carbon nanodot-based electrogenerated chemiluminescence biosensor is described for sensitive and selective detection of microRNA-21 (miRNA-21), a biomarker of several pathologies including cardiovascular diseases (CVDs). The photoluminescent carbon nanodots (CNDs) were obtained using a new synthesis method, simply by treating tiger nut milk in a microwave reactor. The synthesis is environmentally friendly, simple, and efficient. The optical properties and morphological characteristics of the CNDs were exhaustively investigated, confirming that they have oxygen and nitrogen functional groups on their surfaces and exhibit excitation-dependent fluorescence emission, as well as photostability. They act as co-reactant agents in the anodic electrochemiluminescence (ECL) of [Ru(bpy)3]2+, producing different signals for the probe (single-stranded DNA) and the hybridized target (double-stranded DNA). These results paved the way for the development of a sensitive ECL biosensor for the detection of miRNA-21. This was developed by immobilization of a thiolated oligonucleotide, fully complementary to the miRNA-21 sequence, on the disposable gold electrode. The target miRNA-21 was hybridized with the probe on the electrode surface, and the hybridization was detected by the enhancement of the [Ru(bpy)3]2+/DNA ECL signal using CNDs. The biosensor shows a linear response to miRNA-21 concentration up to 100.0 pM with a detection limit of 0.721 fM. The method does not require complex labeling steps, and has a rapid response. It was successfully used to detect miRNA-21 directly in serum samples from heart failure patients without previous RNA extraction neither amplification process.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Substâncias Luminescentes/química , Medições Luminescentes/métodos , MicroRNAs/sangue , Pontos Quânticos/química , Técnicas Biossensoriais/instrumentação , Carbono/química , Complexos de Coordenação/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ouro/química , Insuficiência Cardíaca/sangue , Humanos , Ácidos Nucleicos Imobilizados/genética , Limite de Detecção , Medições Luminescentes/instrumentação , Masculino , MicroRNAs/genética , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Compostos de Rutênio/química
7.
Int J Mol Sci ; 18(6)2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28587101

RESUMO

Rosa species, rose hips, are widespread wild plants that have been traditionally used as medicinal compounds for the treatment of a wide variety of diseases. The therapeutic potential of these plants is based on its antioxidant effects caused by or associated with its phytochemical composition, which includes ascorbic acid, phenolic compounds and healthy fatty acids among others. Over the last few years, medicinal interest in rose hips has increased as a consequence of recent research that has studied its potential application as a treatment for several diseases including skin disorders, hepatotoxicity, renal disturbances, diarrhoea, inflammatory disorders, arthritis, diabetes, hyperlipidaemia, obesity and cancer. In this review, the role of different species of Rosa in the prevention of treatment of various disorders related to oxidative stress, is examined, focusing on new therapeutic approaches from a molecular point of view.


Assuntos
Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Rosa/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Humanos , Medicina Tradicional/métodos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos , Extratos Vegetais/química , Solubilidade
8.
Int J Mol Sci ; 18(1)2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28106826

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death. Most cases of CRC are detected in Western countries, with its incidence increasing year by year. The probability of suffering from colorectal cancer is about 4%-5% and the risk for developing CRC is associated with personal features or habits such as age, chronic disease history and lifestyle. In this context, the gut microbiota has a relevant role, and dysbiosis situations can induce colonic carcinogenesis through a chronic inflammation mechanism. Some of the bacteria responsible for this multiphase process include Fusobacterium spp, Bacteroides fragilis and enteropathogenic Escherichia coli. CRC is caused by mutations that target oncogenes, tumour suppressor genes and genes related to DNA repair mechanisms. Depending on the origin of the mutation, colorectal carcinomas can be classified as sporadic (70%); inherited (5%) and familial (25%). The pathogenic mechanisms leading to this situation can be included in three types, namely chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Within these types of CRC, common mutations, chromosomal changes and translocations have been reported to affect important pathways (WNT, MAPK/PI3K, TGF-ß, TP53), and mutations; in particular, genes such as c-MYC, KRAS, BRAF, PIK3CA, PTEN, SMAD2 and SMAD4 can be used as predictive markers for patient outcome. In addition to gene mutations, alterations in ncRNAs, such as lncRNA or miRNA, can also contribute to different steps of the carcinogenesis process and have a predictive value when used as biomarkers. In consequence, different panels of genes and mRNA are being developed to improve prognosis and treatment selection. The choice of first-line treatment in CRC follows a multimodal approach based on tumour-related characteristics and usually comprises surgical resection followed by chemotherapy combined with monoclonal antibodies or proteins against vascular endothelial growth factor (VEGF) and epidermal growth receptor (EGFR). Besides traditional chemotherapy, alternative therapies (such as agarose tumour macrobeads, anti-inflammatory drugs, probiotics, and gold-based drugs) are currently being studied to increase treatment effectiveness and reduce side effects.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Predisposição Genética para Doença , Humanos , Estadiamento de Neoplasias , Fatores de Risco , Transdução de Sinais
9.
BMC Immunol ; 17(1): 32, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27671753

RESUMO

BACKGROUND: In the context of tumor immunology, tumor cells have been shown to overexpress CD47, an anti-phagocytic signal directed to macrophages to escape from phagocytosis by interacting with Signal Regulatory Protein α SIRPα. In the present work, we designed Polypurine reverse Hoogsteen hairpins, PPRHs, to silence the expression of CD47 in tumor cells and SIRPα in macrophages with the aim to eliminate tumor cells by macrophages in co-culture experiments. METHODS: THP-1 cells were differentiated to macrophages with PMA. The mRNA levels of differentiation markers CD14 and Mcl-1 mRNA and pro-inflammatory cytokines (IL-1ß, IL-18, IL-6, IL-8 and TNF-α) were measured by qRT-PCR. The ability of PPRHs to silence CD47 and SIRPα was evaluated at the mRNA level by qRT-PCR and at the protein level by Western Blot. Macrophages were co-cultured with tumor cells in the presence of PPRHs to silence CD47 and/or SIRPα. Cell viability was assessed by MTT assays. RESULTS: THP-1 cells differentiated to macrophages with PMA showed an increase in macrophage surface markers (CD14, Mcl-1) and pro-inflammatory cytokines (IL-1ß, IL-18, IL-6, IL-8 and TNF-α). PPRHs were able to decrease both CD47 expression in MCF-7 cell line and SIRPα expression in macrophages at the mRNA and protein levels. In the presence of PPRHs, MCF-7 cells were eliminated by macrophages in co-culture experiments, whereas they survived in the absence of PPRHs. CONCLUSIONS: Our data support the usage of PPRHs to diminish CD47/SIRPα interaction by decreasing the expression of both molecules thus resulting in an enhanced killing of MCF-7 cells by macrophages, which might translate into beneficial effects in cancer therapy. These results indicate that PPRHs could represent a new approach with immunotherapeutic applications.

10.
Int J Mol Sci ; 15(12): 23501-18, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25526565

RESUMO

Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family, acting as a chaperone of endoplasmic reticulum under not fully characterized conditions As a result, TXNDC5 interacts with many cell proteins, contributing to their proper folding and correct formation of disulfide bonds through its thioredoxin domains. Moreover, it can also work as an electron transfer reaction, recovering the functional isoform of other protein disulfide isomerases, replacing reduced glutathione in its role. Finally, it also acts as a cellular adapter, interacting with the N-terminal domain of adiponectin receptor. As can be inferred from all these functions, TXNDC5 plays an important role in cell physiology; therefore, dysregulation of its expression is associated with oxidative stress, cell ageing and a large range of pathologies such as arthritis, cancer, diabetes, neurodegenerative diseases, vitiligo and virus infections. Its implication in all these important diseases has made TXNDC5 a susceptible biomarker or even a potential pharmacological target.


Assuntos
Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Diabetes Mellitus/etiologia , Humanos , Hepatopatias/etiologia , Neoplasias/etiologia , Doenças Neurodegenerativas/etiologia , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/química , Vertigem/etiologia
11.
Biology (Basel) ; 13(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38666833

RESUMO

Dental pulp infections are common buccal diseases. When this happens, endodontic treatments are needed to disinfect and prepare the root canal for subsequent procedures. However, the lack of suitable in vitro models representing the anatomy of an immature root canal hinders research on regenerative events crucial in endodontics, such as regenerative procedures. This study aimed to develop a 3D microphysiological system (MPS) to mimic an immature root canal and assess the cytotoxicity of various irrigating solutions on stem cells. Utilizing the Dental Stem Cells SV40 (DSCS) cell line derived from human apical papilla stem cells, we analyzed the effects of different irrigants, including etidronic acid. The results indicated that irrigating solutions diminished cell viability in 2D cultures and influenced cell adhesion within the microphysiological device. Notably, in our 3D studies in the MPS, 17% EDTA and 9% 1-hydroxyethylidene-1, 1-bisphosphonate (HEBP) irrigating solutions demonstrated superior outcomes in terms of DSCS viability and adherence compared to the control. This study highlights the utility of the developed MPS for translational studies in root canal treatments and suggests comparable efficacy between 9% HEBP and 17% EDTA irrigating solutions, offering potential alternatives for clinical applications.

12.
Sci Rep ; 13(1): 4211, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918615

RESUMO

The aging-protective gene α-Klotho (KL) produces two main transcripts. The full-length mRNA generates a transmembrane protein that after proteolytic ectodomain shedding can be detected in serum as processed Klotho (p-KL), and a shorter transcript which codes for a putatively secreted protein (s-KL). Both isoforms exhibit potent pleiotropic beneficial properties, although previous reports showed negative side effects on mineral homeostasis after increasing p-KL concentration exogenously. Here, we expressed independently both isoforms using gene transfer vectors, to assess s-KL effects on mineral metabolism. While mice treated with p-KL presented altered expression of several kidney ion channels, as well as altered levels of Pi and Ca2+ in blood, s-KL treated mice had levels comparable to Null-treated control mice. Besides, bone gene expression of Fgf23 showed a fourfold increase after p-KL treatment, effects not observed with the s-KL isoform. Similarly, bone microstructure parameters of p-KL-treated mice were significantly worse than in control animals, while this was not observed for s-KL, which showed an unexpected increase in trabecular thickness and cortical mineral density. As a conclusion, s-KL (but not p-KL) is a safe therapeutic strategy to exploit KL anti-aging protective effects, presenting no apparent negative effects over mineral metabolism and bone microstructure.


Assuntos
Osso e Ossos , Glucuronidase , Proteínas Klotho , Animais , Camundongos , Osso e Ossos/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Rim/metabolismo , Camundongos Knockout , Minerais/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Klotho/metabolismo
13.
Cell Death Dis ; 14(1): 17, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635269

RESUMO

Bone remodeling is a continuous process between bone-forming osteoblasts and bone-resorbing osteoclasts, with any imbalance resulting in metabolic bone disease, including osteopenia. The HERC1 gene encodes an E3 ubiquitin ligase that affects cellular processes by regulating the ubiquitination of target proteins, such as C-RAF. Of interest, an association exists between biallelic pathogenic sequence variants in the HERC1 gene and the neurodevelopmental disorder MDFPMR syndrome (macrocephaly, dysmorphic facies, and psychomotor retardation). Most pathogenic variants cause loss of HERC1 function, and the affected individuals present with features related to altered bone homeostasis. Herc1-knockout mice offer an excellent model in which to study the role of HERC1 in bone remodeling and to understand its role in disease. In this study, we show that HERC1 regulates osteoblastogenesis and osteoclastogenesis, proving that its depletion increases gene expression of osteoblastic makers during the osteogenic differentiation of mesenchymal stem cells. During this process, HERC1 deficiency increases the levels of C-RAF and of phosphorylated ERK and p38. The Herc1-knockout adult mice developed imbalanced bone homeostasis that presented as osteopenia in both sexes of the adult mice. By contrast, only young female knockout mice had osteopenia and increased number of osteoclasts, with the changes associated with reductions in testosterone and dihydrotestosterone levels. Finally, osteocytes isolated from knockout mice showed a higher expression of osteocytic genes and an increase in the Rankl/Opg ratio, indicating a relevant cell-autonomous role of HERC1 when regulating the transcriptional program of bone formation. Overall, these findings present HERC1 as a modulator of bone homeostasis and highlight potential therapeutic targets for individuals affected by pathological HERC1 variants.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Masculino , Feminino , Animais , Camundongos , Osteogênese/genética , Osteoclastos/metabolismo , Remodelação Óssea/genética , Osteoblastos/metabolismo , Doenças Ósseas Metabólicas/metabolismo , Diferenciação Celular/genética , Camundongos Knockout , Ligante RANK/metabolismo , Reabsorção Óssea/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Commun Biol ; 6(1): 925, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689746

RESUMO

Biological tissues are highly organized structures where spatial-temporal gradients (e.g., nutrients, hypoxia, cytokines) modulate multiple physiological and pathological processes including inflammation, tissue regeneration, embryogenesis, and cancer progression. Current in vitro technologies struggle to capture the complexity of these transient microenvironmental gradients, do not provide dynamic control over the gradient profile, are complex and poorly suited for high throughput applications. Therefore, we have designed Griddent, a user-friendly platform with the capability of generating controllable and reversible gradients in a 3D microenvironment. Our platform consists of an array of 32 microfluidic chambers connected to a 384 well-array through a diffusion port at the bottom of each reservoir well. The diffusion ports are optimized to ensure gradient stability and facilitate manual micropipette loading. This platform is compatible with molecular and functional spatial biology as well as optical and fluorescence microscopy. In this work, we have used this platform to study cancer progression.


Assuntos
Microfluídica , Neoplasias , Humanos , Citocinas , Difusão , Exobiologia , Microambiente Tumoral
15.
Nat Commun ; 14(1): 6681, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865647

RESUMO

Numerous studies are exploring the use of cell adoptive therapies to treat hematological malignancies as well as solid tumors. However, there are numerous factors that dampen the immune response, including viruses like human immunodeficiency virus. In this study, we leverage human-derived microphysiological models to reverse-engineer the HIV-immune system interaction and evaluate the potential of memory-like natural killer cells for HIV+ head and neck cancer, one of the most common tumors in patients living with human immunodeficiency virus. Here, we evaluate multiple aspects of the memory-like natural killer cell response in human-derived bioengineered environments, including immune cell extravasation, tumor penetration, tumor killing, T cell dependence, virus suppression, and compatibility with retroviral medication. Overall, these results suggest that memory-like natural killer cells are capable of operating without T cell assistance and could simultaneously destroy head and neck cancer cells as well as reduce viral latency.


Assuntos
Infecções por HIV , Neoplasias de Cabeça e Pescoço , Vírus , Humanos , HIV , Células Matadoras Naturais , Imunoterapia/métodos
16.
Lab Chip ; 22(19): 3618-3636, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36047330

RESUMO

Neovascularization, the formation of new blood vessels, has received much research attention due to its implications for physiological processes and diseases. Most studies using traditional in vitro and in vivo platforms find challenges in recapitulating key cellular and mechanical cues of the neovascularization processes. Microfluidic in vitro models have been presented as an alternative to these limitations due to their capacity to leverage microscale physics to control cell organization and integrate biochemical and mechanical cues, such as shear stress, cell-cell interactions, or nutrient gradients, making them an ideal option for recapitulating organ physiology. Much has been written about the use of microfluidics in vascular biology models from an engineering perspective. However, a review introducing the different models, components and progress for new potential adopters of these technologies was absent in the literature. Therefore, this paper aims to approach the use of microfluidic technologies in vascular biology from a perspective of biological hallmarks to be studied and written for a wide audience ranging from clinicians to engineers. Here we review applications of microfluidics in vascular biology research, starting with design considerations and fabrication techniques. After that, we review the state of the art in recapitulating angiogenesis and vasculogenesis, according to the hallmarks recapitulated and complexity of the models. Finally, we discuss emerging research areas in neovascularization, such as drug discovery, and potential future directions.


Assuntos
Microfluídica , Neovascularização Patológica , Biologia , Comunicação Celular , Descoberta de Drogas , Humanos , Microfluídica/métodos
17.
Cancers (Basel) ; 14(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159026

RESUMO

Bone metastases represent a lethal condition that frequently occurs in solid tumors such as prostate, breast, lung, and renal cell carcinomas, and increase the risk of skeletal-related events (SREs) including pain, pathologic fractures, and spinal cord compression. This unique metastatic niche consists of a multicellular complex that cancer cells co-opt to engender bone remodeling, immune suppression, and stromal-mediated therapeutic resistance. This review comprehensively discusses clinical challenges of bone metastases, novel preclinical models of the bone and bone marrow microenviroment, and crucial signaling pathways active in bone homeostasis and metastatic niche. These studies establish the context to summarize the current state of investigational agents targeting BM, and approaches to improve BM-targeting therapies. Finally, we discuss opportunities to advance research in bone and bone marrow microenvironments by increasing complexity of humanized preclinical models and fostering interdisciplinary collaborations to translational research in this challenging metastatic niche.

19.
Sensors (Basel) ; 11(12): 11188-205, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22247661

RESUMO

The great variability usually found in underwater media makes modeling a challenging task, but helpful for better understanding or predicting the performance of future deployed systems. In this work, an underwater acoustic propagation model is presented. This model obtains the multipath structure by means of the ray tracing technique. Using this model, the behavior of a relative positioning system is presented. One of the main advantages of relative positioning systems is that only the distances between all the buoys are needed to obtain their positions. In order to obtain the distances, the propagation times of acoustic signals coded by Complementary Set of Sequences (CSS) are used. In this case, the arrival instants are obtained by means of correlation processes. The distances are then used to obtain the position of the buoys by means of the Multidimensional Scaling Technique (MDS). As an early example of an application using this relative positioning system, a tracking of the position of the buoys at different times is performed. With this tracking, the surface current of a particular region could be studied. The performance of the system is evaluated in terms of the distance from the real position to the estimated one.


Assuntos
Acústica , Modelos Teóricos , Água
20.
Sensors (Basel) ; 11(12): 11464-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22247675

RESUMO

This paper raises the design of an ultrasonic array for obstacle detection based on Phased Array (PA) techniques, which steers the acoustic beam through the environment by electronics rather than mechanical means. The transmission of every element in the array has been encoded, according to Code Division for Multiple Access (CDMA), which allows multiple beams to be transmitted simultaneously. All these features together enable a parallel scanning system which does not only improve the image rate but also achieves longer inspection distances in comparison with conventional PA techniques.


Assuntos
Ultrassom , Acústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA