Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 611(7936): 512-518, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261519

RESUMO

Long-term analyses of biodiversity data highlight a 'biodiversity conservation paradox': biological communities show substantial species turnover over the past century1,2, but changes in species richness are marginal1,3-5. Most studies, however, have focused only on the incidence of species, and have not considered changes in local abundance. Here we asked whether analysing changes in the cover of plant species could reveal previously unrecognized patterns of biodiversity change and provide insights into the underlying mechanisms. We compiled and analysed a dataset of 7,738 permanent and semi-permanent vegetation plots from Germany that were surveyed between 2 and 54 times from 1927 to 2020, in total comprising 1,794 species of vascular plants. We found that decrements in cover, averaged across all species and plots, occurred more often than increments; that the number of species that decreased in cover was higher than the number of species that increased; and that decrements were more equally distributed among losers than were gains among winners. Null model simulations confirmed that these trends do not emerge by chance, but are the consequence of species-specific negative effects of environmental changes. In the long run, these trends might result in substantial losses of species at both local and regional scales. Summarizing the changes by decade shows that the inequality in the mean change in species cover of losers and winners diverged as early as the 1960s. We conclude that changes in species cover in communities represent an important but understudied dimension of biodiversity change that should more routinely be considered in time-series analyses.


Assuntos
Biodiversidade , Plantas , Alemanha , Plantas/classificação , Especificidade da Espécie , Fatores de Tempo , Conjuntos de Dados como Assunto
2.
New Phytol ; 241(5): 2287-2299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126264

RESUMO

Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.


Les changements globaux accélèrent les processus de colonisation et d'extinction locales d'espèces, aboutissant à des gains ou à des pertes de lignées évolutives uniques. Ces gains et pertes se produisent-ils de manière aléatoire dans l'arbre phylogénétique ? Nous avons mesuré: les changements de diversité phylogénétique; et la parenté phylogénétique des espèces végétales gagnées ou perdues dans 2672 placettes semi-permanentes disposées dans le sous-bois de forêts tempérées d'Europe sur une période moyenne de 40 ans. Une fois corrigée par la richesse spécifique, la diversité phylogénétique a légèrement augmenté au cours du temps dans les différentes placettes. Les espèces perdues ont une plus grande parenté phylogénétique que les espèces gagnées. Les espèces gagnées sont donc issues d'un plus grand nombre de lignées évolutives que les espèces perdues. Certaines lignées ont gagné ou perdu davantage d'espèces que ce qui est prédit par le hasard : les Ericaceae, les Fabaceae et les Orchidaceae ayant davantage perdu, tandis que les Amaranthaceae, les Cyperaceae, et les Rosaceae ont plus gagné. Il n'y a pas de signal phylogénétique des gains ou pertes d'espèces en réponse aux changements de conditions macroclimatiques ou des dépôts atmosphériques d'azote. Alors que les changements globaux d'origine anthropique s'intensifient, les sous-bois des forêts tempérées connaissent des gains et des pertes de certaines lignées évolutives et de certaines stratégies écologiques, sans que la diversité phylogénétique moyenne ne s'en trouve véritablement affectée.


El cambio global ha acelerado las extinciones y colonizaciones a escala local, lo que a menudo ha supuesto pérdidas y ganancias de linajes evolutivos con características únicas. Ahora bien, ¿estas pérdidas y ganancias ocurren aleatoriamente a lo largo de la filogenia? Cuantificamos: los cambios temporales en la diversidad filogenética de las plantas; y la relación filogenética de las especies perdidas y ganadas en 2.672 parcelas de vegetación semipermanente en sotobosques templados europeos y re-muestreadas durante un período promedio de 40 años. Al controlar por las diferencias en la riqueza de especies, la diversidad filogenética aumentó ligeramente con el tiempo y entre parcelas. Además, las especies perdidas dentro de las parcelas exhibieron un mayor grado de relación filogenética que las especies ganadas. Esto implica que las especies ganadas se originaron en un conjunto de linajes evolutivos más diversos que las especies perdidas. Ciertos linajes también perdieron y ganaron más especies de las esperadas aleatoriamente: Ericaceae, Fabaceae y Orchidaceae experimentaron pérdidas y Amaranthaceae, Cyperaceae y Rosaceae mostraron ganancias. Las pérdidas y ganancias de especies no mostraron ninguna señal filogenética significativa en respuesta a los cambios en las condiciones macro-climáticas y la deposición de nitrógeno. A medida que se intensifica el cambio global antropogénico, los sotobosques temperados experimentan pérdidas y ganancias en ramas filogenéticas y estrategias ecológicas específicas, mientras que la diversidad filogenética media general permanece relativamente estable.


Assuntos
Biodiversidade , Nitrogênio , Filogenia , Mudança Climática , Florestas , Plantas
3.
Ecol Lett ; 25(2): 466-482, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34866301

RESUMO

Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Florestas , Plantas
4.
Glob Ecol Biogeogr ; 31(9): 1877-1893, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36246451

RESUMO

Aim: The amount of forest edges is increasing globally due to forest fragmentation and land-use changes. However, edge effects on the soil seed bank of temperate forests are still poorly understood. Here, we assessed edge effects at contrasting spatial scales across Europe and quantified the extent to which edges can preserve the seeds of forest specialist plants. Location: Temperate European deciduous forests along a 2,300-km latitudinal gradient. Time period: 2018-2021. Major taxa studied: Vascular plants. Methods: Through a greenhouse germination experiment, we studied how edge effects alter the density, diversity, composition and functionality of forest soil seed banks in 90 plots along different latitudes, elevations and forest management types. We also assessed which environmental conditions drive the seed bank responses at the forest edge versus interior and looked at the relationship between the seed bank and the herb layer species richness. Results: Overall, 10,108 seedlings of 250 species emerged from the soil seed bank. Seed density and species richness of generalists (species not only associated with forests) were higher at edges compared to interiors, with a negative influence of C : N ratio and litter quality. Conversely, forest specialist species richness did not decline from the interior to the edge. Also, edges were compositionally, but not functionally, different from interiors. The correlation between the seed bank and the herb layer species richness was positive and affected by microclimate. Main conclusions: Our results underpin how edge effects shape species diversity and composition of soil seed banks in ancient forests, especially increasing the proportion of generalist species and thus potentially favouring a shift in community composition. However, the presence of many forest specialists suggests that soil seed banks still play a key role in understorey species persistence and could support the resilience of our fragmented forests.

5.
Glob Chang Biol ; 24(4): 1722-1740, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29271579

RESUMO

The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change.


Assuntos
Biodiversidade , Plantas/classificação , Clima , Europa (Continente) , Florestas , Atividades Humanas , Nitrogênio
6.
BMC Ecol ; 17(1): 31, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28874197

RESUMO

BACKGROUND: The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. RESULTS: Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. CONCLUSIONS: Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the microhabitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and ecosystem management on I. ricinus abundance.


Assuntos
Ixodes/fisiologia , Animais , Mudança Climática , Ecossistema , Feminino , Florestas , França , Masculino , Densidade Demográfica
7.
BMC Genet ; 16: 103, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289555

RESUMO

BACKGROUND: Invasive species can be a major threat to native biodiversity and the number of invasive plant species is increasing across the globe. Population genetic studies of invasive species can provide key insights into their invasion history and ensuing evolution, but also for their control. Here we genetically characterise populations of Impatiens glandulifera, an invasive plant in Europe that can have a major impact on native plant communities. We compared populations from the species' native range in Kashmir, India, to those in its invaded range, along a latitudinal gradient in Europe. For comparison, the results from 39 other studies of genetic diversity in invasive species were collated. RESULTS: Our results suggest that I. glandulifera was established in the wild in Europe at least twice, from an area outside of our Kashmir study area. Our results further revealed that the genetic diversity in invasive populations of I. glandulifera is unusually low compared to native populations, in particular when compared to other invasive species. Genetic drift rather than mutation seems to have played a role in differentiating populations in Europe. We find evidence of limitations to local gene flow after introduction to Europe, but somewhat less restrictions in the native range. I. glandulifera populations with significant inbreeding were only found in the species' native range and invasive species in general showed no increase in inbreeding upon leaving their native ranges. In Europe we detect cases of migration between distantly located populations. Human activities therefore seem to, at least partially, have facilitated not only introductions, but also further spread of I. glandulifera across Europe. CONCLUSIONS: Although multiple introductions will facilitate the retention of genetic diversity in invasive ranges, widespread invasive species can remain genetically relatively invariant also after multiple introductions. Phenotypic plasticity may therefore be an important component of the successful spread of Impatiens glandulifera across Europe.


Assuntos
Variação Genética , Impatiens/genética , Espécies Introduzidas , Alelos , Europa (Continente) , Marcadores Genéticos , Genética Populacional , Genótipo , Geografia , Modelos Estatísticos , Mutação
8.
Glob Chang Biol ; 20(12): 3814-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24895112

RESUMO

Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies have indicated that phosphorus pollution may be detrimental for biodiversity as well. On the basis of a dataset covering 501 grassland plots throughout Europe, we demonstrate that, independent of the level of atmospheric nitrogen deposition and soil acidity, plant species richness was consistently negatively related to soil phosphorus. We also identified thresholds in soil phosphorus above which biodiversity appears to remain at a constant low level. Our results indicate that nutrient management policies biased toward reducing nitrogen pollution will fail to preserve biodiversity. As soil phosphorus is known to be extremely persistent and we found no evidence for a critical threshold below which no environmental harm is expected, we suggest that agro-environmental schemes should include grasslands that are permanently free from phosphorus fertilization.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Fertilizantes/efeitos adversos , Pradaria , Fósforo/efeitos adversos , Poluentes do Solo/efeitos adversos , Solo/química , Europa (Continente) , Fertilizantes/análise , Geografia , Concentração de Íons de Hidrogênio , Modelos Teóricos , Fósforo/análise , Poluentes do Solo/análise
9.
Ecol Evol ; 14(2): e10971, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414568

RESUMO

Due to multiple land-cover changes, forest herb populations residing in forest patches embedded in agricultural landscapes display different ages and, thus, experience differences in genetic exchange, mutation accumulation and genetic drift. The extent of divergence in present-day population genetic structure among these populations of different ages remains unclear, considering their diverse breeding systems and associated pollinators. Answering this question is essential to understand these species' persistence, maintenance of evolutionary potential and adaptability to changing environments. We applied a multi-landscape setup to compare the genetic structure of forest herb populations across forest patches of different ages (18-338 years). We studied the impact on three common slow-colonizer herb species with distinct breeding systems and associated pollinators: Polygonatum multiflorum (outcrossing, long-distance pollinators), Anemone nemorosa (outcrossing, short-distance pollinators) and Oxalis acetosella (mixed breeding). We aimed to assess if in general older populations displayed higher genetic diversity and lower differentiation than younger ones. We also anticipated that P. multiflorum would show the smallest while O. acetosella the largest difference, between old and young populations. We found that older populations had a higher observed heterozygosity (H o) but a similar level of allelic richness (A r) and expected heterozygosity (H e) as younger populations, except for A. nemorosa, which exhibited higher A r and H e in younger populations. As populations aged, their pairwise genetic differentiation measured by D PS decreased independent of species identity while the other two genetic differentiation measures showed either comparable levels between old and young populations (G" ST) or inconsistency among three species (cGD). The age difference of the two populations did not explain their genetic differentiation. Synthesis: We found restricted evidence that forest herb populations with different ages differ in their genetic structure, indicating that populations of different ages can reach a similar genetic structure within decades and thus persist in the long term after habitat disturbance. Despite their distinct breeding systems and associated pollinators, the three studied species exhibited partly similar genetic patterns, suggesting that their common characteristics, such as being slow colonizers or their ability to propagate vegetatively, are important in determining their long-term response to land-cover change.

10.
Nat Ecol Evol ; 8(5): 880-887, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424266

RESUMO

Forest biodiversity and ecosystem services are hitherto predominantly quantified in forest interiors, well away from edges. However, these edges also represent a substantial proportion of the global forest cover. Here we quantified plant biodiversity and ecosystem service indicators in 225 plots along forest edge-to-interior transects across Europe. We found strong trade-offs: phylogenetic diversity (evolutionary measure of biodiversity), proportion of forest specialists, decomposition and heatwave buffering increased towards the interior, whereas species richness, nectar production potential, stemwood biomass and tree regeneration decreased. These trade-offs were mainly driven by edge-to-interior structural differences. As fragmentation continues, recognizing the role of forest edges is crucial for integrating biodiversity and ecosystem service considerations into sustainable forest management and policy.


Assuntos
Biodiversidade , Florestas , Europa (Continente) , Conservação dos Recursos Naturais , Árvores , Filogenia
11.
Ann Bot ; 111(5): 935-44, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23471008

RESUMO

BACKGROUND AND AIMS: In species with specialized pollination, floral traits are expected to be relatively invariant and decoupled from the phenotypic variation affecting vegetative traits. However, inferring the degree of decoupling between morphological characters from patterns of phenotypic correlations is difficult because phenotypic correlations result from the superimposition of several sources of covariance. In this study it is hypothesized that, in some cases, negative environmental correlations generated by non-congruent reaction norms across traits overshadow positive developmental correlations and generate a decoupling of the phenotypic variation between vegetative and floral traits. METHODS: To test this hypothesis, Campanula rotundifolia were grown from two distinct populations under two temperature treatments, and patterns of correlation were analysed between leaf size and flower size within and among treatments. KEY RESULTS: Flower size was less sensitive to temperature variation than leaf size. Furthermore, flower size and leaf size showed temperature-induced reaction norms in opposite directions. Flower size decreased with an increasing temperature, while leaf size increased. Consequently, among treatments, correlations between leaf size and flower size were negative or absent, while, within treatments, these correlations were positive or absent in the cold and warm environments, respectively. CONCLUSIONS: These results confirm that the decoupling of the phenotypic variation between vegetative and floral traits can be dependent on the environment. They also underline the importance of distinguishing sources of phenotypic covariance when testing hypotheses about phenotypic integration.


Assuntos
Campanulaceae/anatomia & histologia , Campanulaceae/crescimento & desenvolvimento , Meio Ambiente , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Característica Quantitativa Herdável , Flores/fisiologia , Tamanho do Órgão , Fenótipo , Folhas de Planta/anatomia & histologia , Temperatura , Fatores de Tempo
12.
Sci Total Environ ; 898: 165543, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453705

RESUMO

Many landscapes worldwide are characterized by the presence of a mosaic of forest patches with contrasting age and size embedded in a matrix of agricultural land. However, our understanding of the effects of these key forest patch features on the soil nutrient status (in terms of nitrogen, carbon, and phosphorus) and soil pH is still limited due to a lack of large-scale data. To address this research gap, we analyzed 830 soil samples from nearly 200 forest patches varying in age (recent versus ancient forests) and size (small versus larger patches) along a 2500-km latitudinal gradient across Europe. We also considered environmental covariates at multiple scales to increase the generality of our research, including variation in macroclimate, nitrogen deposition rates, forest cover in a buffer zone, basal area and soil type. Multiple linear mixed-effects models were performed to test the combined effects of patch features and environmental covariates on soil nutrients and pH. Recent patches had higher total soil phosphorus concentrations and stocks in the mineral soil layer, along with a lower nitrogen to phosphorus ratio within that layer. Small patches generally had a higher mineral soil pH. Mineral soil nitrogen stocks were lower in forest patches with older age and larger size, as a result of a significant interactive effect. Additionally, environmental covariates had significant effects on soil nutrients, including carbon, nitrogen, phosphorus, and their stoichiometry, depending on the specific covariates. In some cases, the effect of patch age on mineral soil phosphorus stocks was greater than that of environmental covariates. Our findings underpin the important roles of forest patch age and size for the forest soil nutrient status. Long-term studies assessing edge effects and soil development in post-agricultural forests are needed, especially in a context of changing land use and climate.

13.
Ann Bot ; 109(5): 1037-46, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345113

RESUMO

BACKGROUND AND AIMS: The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming. METHODS: Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments. KEY RESULTS: Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted. CONCLUSIONS: Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics.


Assuntos
Anemone/fisiologia , Germinação/fisiologia , Poaceae/fisiologia , Temperatura , Adaptação Fisiológica/fisiologia , Anemone/crescimento & desenvolvimento , Biomassa , Clima , França , Geografia , Poaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Suécia , Fatores de Tempo
14.
Landsc Ecol ; 37(5): 1365-1384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571363

RESUMO

Context: Plant populations in agricultural landscapes are mostly fragmented and their functional connectivity often depends on seed and pollen dispersal by animals. However, little is known about how the interactions of seed and pollen dispersers with the agricultural matrix translate into gene flow among plant populations. Objectives: We aimed to identify effects of the landscape structure on the genetic diversity within, and the genetic differentiation among, spatially isolated populations of three temperate forest herbs. We asked, whether different arable crops have different effects, and whether the orientation of linear landscape elements relative to the gene dispersal direction matters. Methods: We analysed the species' population genetic structures in seven agricultural landscapes across temperate Europe using microsatellite markers. These were modelled as a function of landscape composition and configuration, which we quantified in buffer zones around, and in rectangular landscape strips between, plant populations. Results: Landscape effects were diverse and often contrasting between species, reflecting their association with different pollen- or seed dispersal vectors. Differentiating crop types rather than lumping them together yielded higher proportions of explained variation. Some linear landscape elements had both a channelling and hampering effect on gene flow, depending on their orientation. Conclusions: Landscape structure is a more important determinant of the species' population genetic structure than habitat loss and fragmentation per se. Landscape planning with the aim to enhance the functional connectivity among spatially isolated plant populations should consider that even species of the same ecological guild might show distinct responses to the landscape structure. Supplementary Information: The online version contains supplementary material available at 10.1007/s10980-021-01376-7.

15.
Sci Data ; 9(1): 631, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261458

RESUMO

Vegetation-plot resurvey data are a main source of information on terrestrial biodiversity change, with records reaching back more than one century. Although more and more data from re-sampled plots have been published, there is not yet a comprehensive open-access dataset available for analysis. Here, we compiled and harmonised vegetation-plot resurvey data from Germany covering almost 100 years. We show the distribution of the plot data in space, time and across habitat types of the European Nature Information System (EUNIS). In addition, we include metadata on geographic location, plot size and vegetation structure. The data allow temporal biodiversity change to be assessed at the community scale, reaching back further into the past than most comparable data yet available. They also enable tracking changes in the incidence and distribution of individual species across Germany. In summary, the data come at a level of detail that holds promise for broadening our understanding of the mechanisms and drivers behind plant diversity change over the last century.


Assuntos
Biodiversidade , Ecossistema , Alemanha , Plantas
16.
Sci Total Environ ; 759: 143497, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33246733

RESUMO

Forests play a key role in global carbon cycling and sequestration. However, the potential for carbon drawdown is affected by forest fragmentation and resulting changes in microclimate, nutrient inputs, disturbance and productivity near edges. Up to 20% of the global forested area lies within 100 m of an edge and, even in temperate forests, knowledge on how edge conditions affect carbon stocks and how far this influence penetrates into forest interiors is scarce. Here we studied carbon stocks in the aboveground biomass, forest floor and the mineral topsoil in 225 plots in deciduous forest edges across Europe and tested the impact of macroclimate, nitrogen deposition and smaller-grained drivers (e.g. microclimate) on these stocks. Total carbon and carbon in the aboveground biomass stock were on average 39% and 95% higher at the forest edge than 100 m into the interior. The increase in the aboveground biomass stock close to the edge was mainly related to enhanced nitrogen deposition. No edge influence was found for stocks in the mineral topsoil. Edge-to-interior gradients in forest floor carbon changed across latitude: carbon stocks in the forest floor were higher near the edge in southern Europe. Forest floor carbon decreased with increasing litter quality (i.e. high decomposition rate) and decreasing plant area index, whereas higher soil temperatures negatively affected the mineral topsoil carbon. Based on high-resolution forest fragmentation maps, we estimate that the additional carbon stored in deciduous forest edges across Europe amounts to not less than 183 Tg carbon, which is equivalent to the storage capacity of 1 million ha of additional forest. This study underpins the importance of including edge influences when quantifying the carbon stocks in temperate forests and stresses the importance of preserving natural forest edges and small forest patches with a high edge-to-interior surface area.

17.
Data Brief ; 24: 103461, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30976629

RESUMO

The data presented in this article are related to the research article "Inter-annual variation in species composition and richness after coppicing in a restored coppice-with-standards forest" (Strubelt et al., 2019). The underlying data of that research article are presented here: Monitoring of the vascular plant species composition of 12 permanent plots analysed every year from 1994 till 2002 and again in 2013. For the 2013 survey, data about environmental variables also exist and are included in this data article. The dates of coppicing were recorded for all of these plots, which enabled us to analyse the dynamics of species richness and composition after coppicing on a year to year basis in the above-stated research data article.

18.
PeerJ ; 6: e4929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915689

RESUMO

BACKGROUND: Due to habitat loss and fragmentation, numerous forest species are subject to severe population decline. Investigating variation in genetic diversity, phenotypic plasticity and local adaptation should be a prerequisite for implementing conservation actions. This study aimed to explore these aspects in ten fragmented populations of Physospermum cornubiense in view of translocation measures across its Italian range. METHODS: For each population we collected environmental data on landscape (habitat size, quality and fragmentation) and local conditions (slope, presence of alien species, incidence of the herbivorous insect Metcalfa pruinosa and soil parameters). We measured vegetative and reproductive traits in the field and analysed the genetic population structure using ISSR markers (STRUCTURE and AMOVA). We then estimated the neutral (FST) and quantitative (PST) genetic differentiation of populations. RESULTS: The populations exhibited moderate phenotypic variation. Population size (range: 16-655 individuals), number of flowering adults (range: 3-420 individuals) and inflorescence size (range: 5.0-8.4 cm) were positively related to Mg soil content. Populations' gene diversity was moderate (Nei-H = 0.071-0.1316); STRUCTURE analysis identified five different clusters and three main geographic groups: upper, lower, and Apennine/Western Po plain. Fragmentation did not have an influence on the local adaptation of populations, which for all measured traits showed PST < FST, indicating convergent selection. DISCUSSION: The variation of phenotypic traits across sites was attributed to plastic response rather than local adaptation. Plant translocation from suitable source populations to endangered ones should particularly take into account provenance according to identified genetic clusters and specific soil factors.

19.
Environ Pollut ; 242(Pt B): 1787-1799, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30115529

RESUMO

Understorey communities can dominate forest plant diversity and strongly affect forest ecosystem structure and function. Understoreys often respond sensitively but inconsistently to drivers of ecological change, including nitrogen (N) deposition. Nitrogen deposition effects, reflected in the concept of critical loads, vary greatly not only among species and guilds, but also among forest types. Here, we characterize such context dependency as driven by differences in the amounts and forms of deposited N, cumulative deposition, the filtering of N by overstoreys, and available plant species pools. Nitrogen effects on understorey trajectories can also vary due to differences in surrounding landscape conditions; ambient browsing pressure; soils and geology; other environmental factors controlling plant growth; and, historical and current disturbance/management regimes. The number of these factors and their potentially complex interactions complicate our efforts to make simple predictions about how N deposition affects forest understoreys. We review the literature to examine evidence for context dependency in N deposition effects on forest understoreys. We also use data from 1814 European temperate forest plots to test the ability of multi-level models to characterize context-dependent understorey responses across sites that differ in levels of N deposition, community composition, local conditions and management history. This analysis demonstrated that historical management, and plot location on light and pH-fertility gradients, significantly affect how understorey communities respond to N deposition. We conclude that species' and communities' responses to N deposition, and thus the determination of critical loads, vary greatly depending on environmental contexts. This complicates our efforts to predict how N deposition will affect forest understoreys and thus how best to conserve and restore understorey biodiversity. To reduce uncertainty and incorporate context dependency in critical load setting, we should assemble data on underlying environmental conditions, conduct globally distributed field experiments, and analyse a wider range of habitat types.


Assuntos
Florestas , Nitrogênio/análise , Biodiversidade , Ecossistema , Ciclo do Nitrogênio , Plantas , Solo , Árvores/crescimento & desenvolvimento
20.
Parasit Vectors ; 11(1): 23, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310722

RESUMO

BACKGROUND: The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. METHODS: We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. RESULTS: During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro- and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood. CONCLUSIONS: Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further.


Assuntos
Borrelia burgdorferi/isolamento & purificação , Portador Sadio , Ecossistema , Exposição Ambiental , Ixodes/microbiologia , Animais , Europa (Continente) , Florestas , Modelos Estatísticos , Prevalência , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA