Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(25): 7133-7147, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31986887

RESUMO

Chemically active particles achieve motility without external forces and torques ("self-propulsion") due to catalytic chemical reactions at their surfaces, which change the chemical composition of the surrounding solution (called "chemical field") and induce hydrodynamic flow of the solution. By coupling the distortions of these fields back to its motion, a chemically active particle experiences an effective interaction with confining surfaces. This coupling can lead to a rich behavior, such as the occurrence of wall-bound steady states of "sliding". Most active particles are density mismatched with the solution and, thus, tend to sediment. Moreover, the often employed Janus spheres, which consist of an inert core material decorated with a cap-like, thin layer of a catalyst, are gyrotactic (i.e., "bottom-heavy"). Whether or not they may exhibit sliding states at horizontal walls depends on the interplay between the active motion and the gravity-driven sedimentation and alignment, such as the gyrotactic tendency to align the axis along the gravity direction being overcome by a competing, activity-driven alignment with a different orientation. It is therefore important to understand and quantify the influence of these gravity-induced effects on the behavior of model chemically active particles moving in the vicinity of walls. For model gyrotactic, self-phoretic Janus particles, here we study theoretically the occurrence of sliding states at horizontal planar walls that are either below ("floor") or above ("ceiling") the particle. We construct "state diagrams" characterizing the occurrence of such states as a function of the sedimentation velocity and of the gyrotactic response of the particle, as well as of the phoretic mobility of the particle. We show that in certain cases sliding states may emerge simultaneously at both the ceiling and the floor, while the larger part of the experimentally relevant parameter space corresponds to particles that would exhibit sliding states only either at the floor or at the ceiling-or there are no sliding states at all. These predictions are critically compared with the results of previous experimental studies, as well as with our dedicated experiments carried out with Pt-coated, polystyrene-core, or silica-core Janus spheres immersed in aqueous hydrogen peroxide solutions.

2.
Soft Matter ; 16(22): 5334, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32458961

RESUMO

Correction for 'Controlling the dynamics of colloidal particles by critical Casimir forces' by Alessandro Magazzù et al., Soft Matter, 2019, 15, 2152-2162, DOI: 10.1039/C8SM01376D.

3.
Acc Chem Res ; 51(12): 2991-2997, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30403132

RESUMO

Chemically active colloids can achieve force- and torque-free motility ("self-propulsion") via the promotion, on their surface, of catalytic chemical reactions involving the surrounding solution. Such systems are valuable both from a theoretical perspective, serving as paradigms for nonequilibrium processes, as well as from an application viewpoint, according to which active colloids are envisioned to play the role of carriers ("engines") in novel lab-on-a-chip devices. The motion of such colloids is intrinsically connected with a "chemical field", i.e., the distribution near the colloid of the number densities of the various chemical species present in the solution, and with the hydrodynamic flow of the solution around the particle. In most of the envisioned applications, and in virtually all reported experimental studies, the active colloids operate under spatial confinement (e.g., within a microfluidic channel, a drop, a free-standing liquid film, etc.). In such cases, the chemical field and the hydrodynamic flow associated with an active colloid are influenced by any nearby confining surfaces, and these disturbances couple back to the particle. Thus, an effective interaction with the spatial confinement arises. Consequently, the particle is endowed with means to perceive and to respond to its environment. Understanding these effective interactions, finding the key parameters which control them, and designing particles with desired, preconfigured responses to given environments, require interdisciplinary approaches which synergistically integrate methods and knowledge from physics, chemistry, engineering, and materials science. Here we review how, via simple models of chemical activity and self-phoretic motion, progress has recently been made in understanding the basic physical principles behind the complex behaviors exhibited by active particles near interfaces. First, we consider the occurrence of "interface-bounded" steady states of chemically active colloids near simple, nonresponsive interfaces. Examples include particles "sliding" along, or "hovering" above, a hard planar wall while inducing hydrodynamic flow of the solution. These states lay the foundations for concepts like the guidance of particles by the topography of the wall. We continue to discuss responsive interfaces: a suitable chemical patterning of a planar wall allows one to bring the particles into states of motion which are spatially localized (e.g., within chemical stripes or along chemical steps). These occur due to the wall responding to the activity-induced chemical gradients by generating osmotic flows, which encode the surface-chemistry of the wall. Finally, we discuss how, via activity-induced Marangoni stresses, long-ranged effective interactions emerge from the strong hydrodynamic response of fluid interfaces. These examples highlight how in this context a desired behavior can be potentially selected by tuning suitable parameters (e.g., the phoretic mobility of the particle, or the strength of the Marangoni stress at an interface). This can be accomplished via a judicious design of the surface chemistry of the particle and of the boundary, or by the choice of the chemical reaction in solution.

4.
Soft Matter ; 15(20): 4109-4126, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31080982

RESUMO

Ionic liquid crystals (ILCs) are anisotropic mesogenic molecules which additionally carry charges. This combination gives rise to a complex interplay of the underlying (anisotropic) contributions to the pair interactions. It promises interesting and distinctive structural and orientational properties to arise in systems of ILCs, combining properties of liquid crystals and ionic liquids. While previous theoretical studies have focused on the phase behavior of ILCs and the structure of the respective bulk phases, in the present study we provide new results, obtained within density functional theory, concerning (planar) free interfaces between an isotropic liquid L and two types of smectic-A phases (SA or SAW). We discuss the structural and orientational properties of these interfaces in terms of the packing fraction profile η(r) and the orientational order parameter profile S2(r) concerning the tilt angle α between the (bulk) smectic layer normal and the interface normal. The asymptotic decay of η(r) and of S2(r) towards their values in the isotropic bulk is discussed, too.

5.
Soft Matter ; 15(37): 7462-7471, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31512709

RESUMO

Here, we investigate the complete drying of hydrophobic cavities in order to elucidate the dependence of drying on the size, the geometry, and the degree of hydrophobicity of the confinement. Two complementary theoretical approaches are adopted: a macroscopic one based on classical capillarity and a microscopic classical density functional theory. This combination allows us to pinpoint unique drying mechanisms at the nanoscale and to clearly differentiate them from the mechanisms operational at the macroscale. Nanoscale hydrophobic cavities allow the thermodynamic destabilization of the confined liquid phase over an unexpectedly broad range of conditions, including pressures as large as 10 MPa and contact angles close to 90°. On the other hand, for cavities on the micron scale, such destabilization occurs only for much larger contact angles and close to liquid-vapor coexistence. These scale-dependent drying mechanisms are used to propose design criteria for hierarchical superhydrophobic surfaces capable of spontaneous self-recovery over a broad range of operating conditions. In particular, we detail the requirements under which it is possible to realize perpetual superhydrophobicity at positive pressures on surfaces with micron-sized textures by exploiting drying, facilitated by nanoscale coatings. Concerning the issue of superhydrophobicity, these findings indicate a promising direction both for surface fabrication and for the experimental characterization of perpetual surperhydrophobicity. From a more basic perspective, the present results have an echo on a wealth of biological problems in which hydrophobic confinement induces drying, such as in protein folding, molecular recognition, and hydrophobic gating.

6.
Soft Matter ; 15(10): 2152-2162, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30675607

RESUMO

Critical Casimir forces can play an important role for applications in nano-science and nano-technology, owing to their piconewton strength, nanometric action range, fine tunability as a function of temperature, and exquisite dependence on the surface properties of the involved objects. Here, we investigate the effects of critical Casimir forces on the free dynamics of a pair of colloidal particles dispersed in the bulk of a near-critical binary liquid solvent, using blinking optical tweezers. In particular, we measure the time evolution of the distance between the two colloids to determine their relative diffusion and drift velocity. Furthermore, we show how critical Casimir forces change the dynamic properties of this two-colloid system by studying the temperature dependence of the distribution of the so-called first-passage time, i.e., of the time necessary for the particles to reach for the first time a certain separation, starting from an initially assigned one. These data are in good agreement with theoretical results obtained from Monte Carlo simulations and Langevin dynamics.

7.
Proc Natl Acad Sci U S A ; 113(3): E262-71, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26721395

RESUMO

Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles.

8.
Soft Matter ; 12(43): 8927-8934, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27747362

RESUMO

A liquid droplet placed on a geometrically textured surface may take on a "suspended" state, in which the liquid wets only the top of the surface structure, while the remaining geometrical features are occupied by vapor. This superhydrophobic Cassie-Baxter state is characterized by its composite interface which is intrinsically fragile and, if subjected to certain external perturbations, may collapse into the fully wet, so-called Wenzel state. Restoring the superhydrophobic Cassie-Baxter state requires a supply of free energy to the system in order to again nucleate the vapor. Here, we use microscopic classical density functional theory in order to study the Cassie-Baxter to Wenzel and the reverse transition in widely spaced, parallel arrays of rectangular nanogrooves patterned on a hydrophobic flat surface. We demonstrate that if the width of the grooves falls below a threshold value of ca. 7 nm, which depends on the surface chemistry, the Wenzel state becomes thermodynamically unstable even at very large positive pressures, thus realizing a "perpetual" superhydrophobic Cassie-Baxter state by passive means. Building upon this finding, we demonstrate that hierarchical structures can achieve perpetual superhydrophobicity even for micron-sized geometrical textures.

9.
Phys Rev Lett ; 111(5): 055701, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952419

RESUMO

Colloids immersed in a critical binary liquid mixture are subject to critical Casimir forces (CCFs) because they confine its concentration fluctuations and influence the latter via effective surface fields. To date, CCFs have been primarily studied in thermodynamic equilibrium. However, due to the critical slowing down, the order parameter around a particle can easily be perturbed by any motion of the colloid or by solvent flow. This leads to significant but largely unexplored changes in the CCF. Here we study the drag force on a single colloidal particle moving in a near-critical fluid mixture and the relative motion of two colloids due to the CCF acting on them. In order to account for the kinetic couplings among the order parameter field, the solvent velocity field, and the particle motion, we use a fluid particle dynamics method. These studies extend the understanding of CCFs from thermal equilibrium to nonequilibrium processes, which are relevant to current experiments, and show the emergence of significant effects near the critical point.

10.
Phys Rev E ; 97(4-1): 042603, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758678

RESUMO

Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature T_{c} of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.

11.
Nat Commun ; 7: 11403, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097797

RESUMO

In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces.

12.
J Chem Phys ; 123(20): 204723, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16351309

RESUMO

Thermal fluctuations cause the local normal vectors of fluid interfaces to deviate from the vertical direction defined by the flat mean interface position. This leads to a nonzero mean value of the corresponding polar tilt angle which renders a characterization of the thermal state of an interface. Based on the concept of an effective interface Hamiltonian we determine the variances of the local interface position and of its lateral derivatives. This leads to the probability distribution functions for the metric of the interface and for the tilt angle which allows us to calculate its mean value and its mean-square deviation. We compare the temperature dependences of these quantities as predicted by the simple capillary-wave model, by an improved phenomenological model, and by the microscopic effective interface Hamiltonian derived from density-functional theory. The mean tilt angle discriminates clearly between these theoretical approaches and emphasizes the importance of the variation of the surface tension at small wavelengths. Also the tilt angle two-point correlation function is determined which renders an additional structural characterization of interfacial fluctuations. Various experimental accesses to measure the local orientational fluctuations are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA