Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nematol ; 54(1): 20220035, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36338426

RESUMO

Plectus murrayi is a free-living microbivorous nematode endemic to Antarctic soils. Our draft assembly of its mitogenome was 15,656 bp long, containing 12 protein-coding, eight transfer RNA (tRNA), and two ribosomal RNA (rRNA) genes. Mitophylogenomic analyses extend our understanding of mitochondrial evolution in Nematoda.

2.
G3 (Bethesda) ; 11(1)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33561244

RESUMO

Plectus murrayi is one of the most common and locally abundant invertebrates of continental Antarctic ecosystems. Because it is readily cultured on artificial medium in the laboratory and highly tolerant to an extremely harsh environment, P. murrayi is emerging as a model organism for understanding the evolutionary origin and maintenance of adaptive responses to multiple environmental stressors, including freezing and desiccation. The de novo assembled genome of P. murrayi contains 225.741 million base pairs and a total of 14,689 predicted genes. Compared to Caenorhabditis elegans, the architectural components of P. murrayi are characterized by a lower number of protein-coding genes, fewer transposable elements, but more exons, than closely related taxa from less harsh environments. We compared the transcriptomes of lab-reared P. murrayi with wild-caught P. murrayi and found genes involved in growth and cellular processing were up-regulated in lab-cultured P. murrayi, while a few genes associated with cellular metabolism and freeze tolerance were expressed at relatively lower levels. Preliminary comparative genomic and transcriptomic analyses suggest that the observed constraints on P. murrayi genome architecture and functional gene expression, including genome decay and intron retention, may be an adaptive response to persisting in a biotically simplified, yet consistently physically harsh environment.


Assuntos
Ecossistema , Nematoides , Animais , Regiões Antárticas , Congelamento , Perfilação da Expressão Gênica , Nematoides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA