Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 367: 122003, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39083937

RESUMO

Peanut (Arachis hypogaea L.) plant has a high requirement for calcium (Ca) during its growth and development, and possesses the ability to accumulate cadmium (Cd) from soil. However, the precise mechanisms underlying the antagonistic effects between Ca and Cd remain unclear. This study aimed to explore the dynamic changes in Cd accumulation in peanut seedlings by varying the Ca-to-Cd concentration ratio (CRCa/Cd) from 250 to 3500. Additionally, the influence of ion channel competition and cell wall fixation in the root on Cd accumulation in peanuts was explored by analyzing Cd chemical forms, subcellular distribution, pectin content, and Cd2+ fluxes using a non-invasive micro-test technique (NMT). The findings revealed that Cd accumulation in peanut seedlings was significantly lower when the CRCa/Cd was higher than 2000. In the Ca-pretreated seedlings (cell wall fixation treatment), Cd content in the shoots and roots decreased by 18.9% and 25.0%, respectively, compared with the simultaneous exposure to Ca and Cd (ion channel competition treatment). Cd2+ influx in peanut roots decreased by 55.8% in the Ca-pretreated group. However, increasing the competitive strength of Ca2+ and Cd2+ did not affect Cd2+ influx under normal Ca conditions (>2 mM Ca). Meanwhile, Ca pretreatment significantly increased Cd distribution in the root cell wall, pectate, and protein-binding forms, while significantly reducing Cd distribution in root soluble components and inorganic Cd forms. The pectin content in the roots increased by 128% and 226% in the Ca and Cd simultaneous exposure treatment and Ca pretreatment, respectively. These results suggest that Ca pretreatment enhanced Cd retention in the root cell wall. Overall, exogenous Ca effectively mitigated Cd accumulation in peanut plants when the CRCa/Cd was below 2000, and Ca2+ channels partially facilitate the entry of Cd2+ into peanut roots. Under normal Ca supply conditions, exogenous Ca reduced Cd accumulation in peanuts primarily through root cell wall fixation rather than ion channel competition. Our findings provide insights into the mechanism by which Ca alleviates the uptake and transfer of Cd in peanuts.


Assuntos
Arachis , Cádmio , Cálcio , Cádmio/metabolismo , Arachis/metabolismo , Cálcio/metabolismo , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Solo/química
2.
Ecotoxicol Environ Saf ; 258: 114968, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37137260

RESUMO

By studying the dynamic characteristics of and key growth stages for mercury (Hg) enrichment in rice, the Hg migration and translocation processes in this species can be better understood. In this study, a pot experiment was conducted, wherein two rice cultivars, Tianyouhuazhan (TYHZ, indica) and Zhendao 18 (ZD18, japonica), were selected and planted for analysing the Hg accumulation kinetic characteristics in rice plants. The plants were sampled at each growth stage, and the biomass and total Hg (THg) and methylmercury (MeHg) concentrations of each tissue were measured. The relative Hg contribution rates (CRs) in whole rice plants and rice grains were calculated, and the growth stage with the highest relative contribution was identified as the key growth stage for Hg accumulation. The results indicated that in rice, the MeHg translocation capability was stronger than the THg translocation capability. Significant differences in the kinetic characteristics of Hg accumulation were found between the two rice cultivars, and the TYHZ rice grains had a stronger Hg accumulation ability than the ZD18 rice grains. The key growth stages for THg accumulation in whole rice plants of both cultivars were the tillering and booting stages, while that for MeHg accumulation was the tillering stage. The key period for Hg accumulation in rice grains was the grain filling stage for both cultivars. The insights from this study could provide scientific guidance for the safe production of rice in Hg-contaminated soil.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Mercúrio/análise , Solo , Poluentes do Solo/análise , Monitoramento Ambiental , Compostos de Metilmercúrio/análise
3.
Bull Environ Contam Toxicol ; 111(1): 5, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349509

RESUMO

It is urgent to detect the major controlling factors and establish predictive models of mercury (Hg) accumulation in rice. A pot trial was conducted, exogenous Hg was added to 19 paddy soils at 4 concentration levels in this study. The major controlling factors of total Hg (THg) in brown rice were soil THg, pH and organic matter (OM) content, while those of methylmercury (MeHg) in brown rice were soil MeHg and OM. THg and MeHg in brown rice could be well predicted by soil THg, pH and clay content. The data from previous studies were collected to validate the predictive models of Hg in brown rice. The predicted values of Hg in brown rice were within the twofold prediction intervals of the observations, which demonstrated the predictive models in this study were reliable. The results could provide theoretical foundation for the risk assessment of Hg in paddy soils.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Compostos de Metilmercúrio/química , Mercúrio/análise , Oryza/química , Monitoramento Ambiental , Poluentes do Solo/análise , Solo/química
4.
J Environ Manage ; 316: 115336, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658266

RESUMO

Temperature variation can have a significant impact on arsenic (As) bioavailability in paddy soils. However, details regarding the transformation of exogenous As during the aging process in paddy soils at various temperatures remain unclear. This work investigated the effects of temperature on the As extractability and As species transformation of three paddy soils spiked with exogenous arsenate at 60 mg kg-1 under flooded aging and explored the related chemical and microbial mechanisms. The results showed that 0.05 M NH4H2PO4-extractable As decreased over time during flooded aging for 192 days, and it decreased by approximately one-third at 35 °C compared with 15 °C and 25 °C at the same aging time, indicating that higher temperatures facilitated the decrease in As extractability. As(V) reduction mainly occurred at 35 °C because the abundance and As(V)-reducing capacity of the predominant indigenous bacteria, the Bacillus sp strains, and the abundance of the arrA gene were significantly higher than those at 15 °C and 25 °C. The reduction of As(V) to As(III) and aging occurred simultaneously. The kinetic models were established, and the rate constants of the reduction and aging processes were obtained. Soil properties significantly affected the aging and reduction processes of extractable As(V). Our study indicated that elevating temperature had dual effects on the environmental risk of As in the flooded aging process. The previous definition of "aging" based on cationic metals needs to be updated according to the transformation characteristics of As species in flooded conditions. Our results addressed the necessity of impeding the reduction of As(V) in paddy soils under global warming.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/química , Solo/química , Poluentes do Solo/análise , Temperatura
5.
Environ Microbiol ; 23(11): 6707-6720, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390619

RESUMO

A growing body of evidence suggests that microplastics may be colonized with a unique microbiome, termed 'plastisphere', in aquatic environments. However, the deep mechanisms (deterministic and/or stochastic processes) underlying the community assembly on microplastics are still poorly understood. Here, we took the estuary of Hangzhou Bay (Zhejiang, China) as an example and examined the assembly mechanisms of bacterial communities in water and microplastic samples. Results from high-throughput sequencing showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla across all samples. Additionally, microorganisms from plastisphere and planktonic communities exhibited contrasting taxonomic compositions, with greater within-group variation for microplastic samples. The null model analysis indicated the plastisphere bacterial communities were dominantly driven by the stochastic process of drift (58.34%) and dispersal limitation (23.41%). The normalized stochasticity ratio (NST) also showed that the community assembly on microplastics was more stochastic (NST > 50%). Based on the Sloan neutral community model, the migration rate for plastisphere communities (0.015) was significantly lower than that for planktonic communities (0.936), potentially suggesting that it is the stochastic balance between loss and gain of bacteria (e.g., stochastic births and deaths) critically shaping the community assembly on microplastics and generating the specific niches. This study greatly enhanced our understanding of the ecological patterns of microplastic-associated microbial communities in aquatic environments.


Assuntos
Microbiota , Microplásticos , Bactérias/genética , Plásticos , Processos Estocásticos
6.
Ecotoxicol Environ Saf ; 189: 109948, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31759738

RESUMO

Proper protocols for assessing the remediation effectiveness of contaminated soils are an important part of remediation projects. In the present study, the residual immobilization effectiveness of hydrated lime (L), hydroxyapatite (H), biochar (B) and organic fertilizer (F) alone and in combination was assessed by Eisenia fetida. The results showed that the application of amendments had no significant effect on the death rate and average fresh weight loss of earthworms. The earthworm Cd concentration increased with prolonged exposure time, however, the significant immobilization efficacy of amendments observed on the 7th day nearly disappeared after 28 days of exposure. The immobilization efficiencies, estimated by the earthworms internal Cd concentration, of L, H and B on the 7th day were 38.6%, 37.8% and 20.7%, respectively. These values decreased to 4.9%, 19.8% and 15.1%, respectively, on the 28th day. The detoxification effect of amendments was confirmed by the Cd subcellular fractionation in earthworms with lower proportions of Cd distributed in the metal-sensitive fractions in L, H and B treatments. The level of oxidative stress response of earthworms increased with exposure duration and amendments alleviated the oxidative damage induced by Cd to the earthworms. In addition, the pH and CaCl2-Cd in soils were both increased due to earthworm life activities and gut-related ingestion. In summary, the assessment of immobilization effectiveness of heavy metal-contaminated soils using Eisenia fetida was time-dependent. The immobilization efficacy of L and H performed better than B and F on the 7th day, while H and B performed better than L and F on the 28th day. Accordingly, the short-term earthworm exposure experiment (7 days) was recommended to be an alternative approach to time-consuming plant bioassays in assessment of reduced phytoavailability in chemical immobilization remediation. But the impact of earthworms on the immobilization effect of amendments needs to be considered in practical remediation.


Assuntos
Cádmio/análise , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/análise , Animais , Cádmio/toxicidade , Compostos de Cálcio , Carvão Vegetal , Durapatita , Fertilizantes , Oligoquetos/química , Óxidos , Solo/química , Poluentes do Solo/toxicidade
7.
Ecotoxicol Environ Saf ; 167: 338-344, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30359900

RESUMO

Cadmium (Cd) contamination in paddy fields has received extensive attention throughout the world, especially in China. In this study, treatments of a lime application with or without zinc sulfate as basal fertilizer, a basal or tillering application of zinc sulfate, and basal stabilization using lime combined with a tillering application of zinc sulfate were designed in a field trial to investigate their contributions to the uptake and translocation of Cd in rice plants. The results showed that basal stabilization using lime significantly decreased brown rice Cd by 42%; the CaCl2-extractable Cd in the soil was decreased by 46-51%, but the phytoavailability of Zn in the soil was also inhibited. The basal or tillering application of zinc sulfate significantly inhibited the upward transport of Cd (from the root to the shoot) while having no significant impact on CaCl2-extractable Cd; consequently, the concentration of Cd in the brown rice was reduced by only 17-25%. Compared with the lime application alone, the basal application of lime together with zinc sulfate did not further reduce the Cd in brown rice. However, basal stabilization using lime combined with the tillering application of zinc decreased the Cd in brown rice by 73%, which was attributed to the reduced CaCl2-extractable Cd and the competitive effect of Zn on Cd, in which the inhibition of the upward transport of Cd inside the root played an important role. Two field verification tests conducted during the next year also demonstrated that this combined method significantly decreased the level of Cd in brown rice.


Assuntos
Cádmio/análise , Fertilizantes , Oryza/química , Zinco , Compostos de Cálcio , China , Óxidos , Solo/química , Poluentes do Solo/análise
8.
Ecotoxicol Environ Saf ; 161: 164-172, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29879577

RESUMO

Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl2-extractable Cd: pH (△CaCl2-Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation zones.


Assuntos
Cádmio/química , Compostos de Cálcio/química , Carvão Vegetal/química , Durapatita/química , Recuperação e Remediação Ambiental/métodos , Óxidos/química , Poluentes do Solo/química , Solo/química , Chuva Ácida , Adsorção , Agricultura , Precipitação Química , Poluição Ambiental , Fertilizantes , Concentração de Íons de Hidrogênio , Metais Pesados/análise
9.
Ecotoxicol Environ Saf ; 148: 303-310, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29091832

RESUMO

Soil cadmium (Cd) contamination in China has become a serious concern due to its high toxicity to human health through food chains. A pot experiment was conducted to investigate the effects of hydrated lime (L), hydroxyapatite (H) and organic fertilizer (F) alone or in combination to remedy a mild (DY) and a moderate (YX) Cd contaminated agricultural soil under rice-wheat rotation. Results showed that crops grain yield and Cd concentration, soil pH, CaCl2 extractable Cd and Cd speciation were markedly affected by the amendments. In both cropping seasons, hydrated lime and hydroxyapatite significantly immobilized soil Cd, and hydroxyapatite, organic fertilizer significantly increased grain yield. Hydrated lime mainly increased soil carbonates bound Cd fractions resulted from 16.7% to 36.2% and from 16.8% to 28.3%, and hydroxyapatite increased Fe/Mn oxides Cd fractions from 19.3% to 33.4% and from 31.4% to 42.1% in the DY and YX soils, respectively; while organic fertilizer slightly increased soil exchangeable and organic matter bound Cd fractions. Besides, combined amendments contain alkaline materials and organic materials have the potential to decrease grain Cd and increase grain yield simultaneously. Therefore, in view of the effects of amendments on grain yield and Cd concentration, the cost as well as the potential benefits expected, combined amendments like hydrated lime + organic fertilizer, hydrated lime + hydroxyapatite + organic fertilizer are recommended in practical application. Mechanisms of Cd immobilization affected by amendments are mainly attributed to the changes in soil Cd availability and crops root uptake rather than internal translocation in plants.


Assuntos
Cádmio/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Triticum/metabolismo , Agricultura , Compostos de Cálcio , China , Produtos Agrícolas/metabolismo , Durapatita , Poluição Ambiental , Recuperação e Remediação Ambiental/métodos , Fertilizantes , Óxidos , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
10.
Ecotoxicol Environ Saf ; 122: 153-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26232042

RESUMO

This study investigated heavy metal concentrations in soils and navel oranges of Xinfeng County, a well-known navel orange producing area of China. The results showed that the average concentrations of lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As) and mercury (Hg) in orchard soils all increased compared to the regional background values, especially for Cd, which increased by 422%. When compared to the Chinese Environmental Quality Standard for soil (GB15618-1995), Pb, Cr and Hg concentrations in all orchard soil samples were below the limit standards, but Cd concentrations in 24 soil samples (21%) and As concentrations in 8 soil samples (7%) exceeded the limit standards. However, concentrations of all heavy metals in navel orange pulps were within the National Food Safety Standard of China (GB 2762-2012). Dietary risk assessment also showed that the exposure to these five heavy metals by consumption of navel oranges could hardly pose adverse health effects on adults and children. Since the range and degree of soil Cd pollution was widest and the most severe of all, Cd was taken as an example to reveal the transfer characteristics of heavy metals in soil-navel orange system. Cd concentrations in different organs of navel orange trees decreased in the following order: root>leaf>peel>pulp. That navel oranges planted in the Cd contaminated soils were within the national food safety standard was mainly due to the low transfer factor for Cd from soil to pulp (TFpulp). Further studies showed that TFpulp was significantly negatively correlated with soil pH, organic carbon (OC) and cation exchange capacity (CEC). Based on these soil properties, a prediction equation for TFpulp was established, which indicated that the risk for Cd concentration of navel orange pulp exceeding the national food limit is generally low, when soil Cd concentration is below 7.30 mg/kg. If appropriate actions are taken to increase soil pH, OC and CEC, Cd concentrations in navel orange pulps could be further reduced.


Assuntos
Arsênio/análise , Citrus sinensis , Frutas/química , Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Arsênio/metabolismo , Carbono/análise , Criança , China , Citrus sinensis/metabolismo , Contaminação de Alimentos/análise , Frutas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Metais Pesados/metabolismo , Medição de Risco , Solo/química , Poluentes do Solo/metabolismo
11.
Ecotoxicol Environ Saf ; 108: 179-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25064171

RESUMO

Soil environmental quality standards in respect of heavy metals for farmlands should be established considering both their effects on crop yield and their accumulation in the edible part. A greenhouse experiment was conducted to investigate the effects of chromium (Cr) on biomass production and Cr accumulation in carrot plants grown in a wide range of soils. The results revealed that carrot yield significantly decreased in 18 of the total 20 soils with Cr addition being the soil environmental quality standard of China. The Cr content of carrot grown in the five soils with pH>8.0 exceeded the maximum allowable level (0.5mgkg(-1)) according to the Chinese General Standard for Contaminants in Foods. The relationship between carrot Cr concentration and soil pH could be well fitted (R(2)=0.70, P<0.0001) by a linear-linear segmented regression model. The addition of Cr to soil influenced carrot yield firstly rather than the food quality. The major soil factors controlling Cr phytotoxicity and the prediction models were further identified and developed using path analysis and stepwise multiple linear regression analysis. Soil Cr thresholds for phytotoxicity meanwhile ensuring food safety were then derived on the condition of 10 percent yield reduction.


Assuntos
Cromo/toxicidade , Daucus carota/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biomassa , China , Cromo/metabolismo , Daucus carota/crescimento & desenvolvimento , Daucus carota/metabolismo , Inocuidade dos Alimentos , Modelos Lineares , Solo , Poluentes do Solo/metabolismo
12.
Eco Environ Health ; 3(2): 238-246, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693960

RESUMO

The establishment of ecological risk thresholds for arsenic (As) plays a pivotal role in developing soil conservation strategies. However, despite many studies regarding the toxicological profile of As, such thresholds varying by diverse soil properties have rarely been established. This study aims to address this gap by compiling and critically examining an extensive dataset of As toxicity data sourced from existing literature. Furthermore, to augment the existing information, experimental studies on As toxicity focusing on barley-root elongation were carried out across various soil types. The As concentrations varied from 12.01 to 437.25 mg/kg for the effective concentrations that inhibited 10% of barley-root growth (EC10). The present study applied a machine-learning approach to investigate the complex associations between the toxicity thresholds of As and diverse soil properties. The results revealed that Mn-/Fe-ox and clay content emerged as the most influential factors in predicting the EC10 contribution. Additionally, by using a species sensitivity distribution model and toxicity data from 21 different species, the hazardous concentration for x% of species (HCx) was calculated for four representative soil scenarios. The HC5 values for acidic, neutral, alkaline, and alkaline calcareous soils were 80, 47, 40, and 28 mg/kg, respectively. This study establishes an evidence-based methodology for deriving soil-specific guidance concerning As toxicity thresholds.

13.
Environ Pollut ; 351: 124016, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38648966

RESUMO

The accumulation of antimony (Sb) in plants and its potential effects on human health are of increasing concern. Nevertheless, only a few countries or regions have established soil Sb thresholds for agricultural purposes, and soil properties have not been taken into account. This study investigated the accumulation of Sb in the edible parts of pakchoi and wheat grain by adding exogenous Sb to 21 soils with varying properties. The results revealed a positive correlation between bioavailable Sb (Sbava, extracted by 0.1 M K2HPO4) in soil and Sb in the edible parts of pakchoi (R2 = 0.77, p < 0.05) and wheat grain (R2 = 0.54, p < 0.05). Both machine learning and traditional multiple regression analysis indicated Sbava was the most critical feature and the main soil properties that contributed to Sb uptake by pakchoi and wheat were CaCO3 and clay, respectively. The advisory food limits for Sb in pakchoi and wheat were estimated based on health risk assessment, and used to derive soil thresholds for safe pakchoi and wheat production based on Sbtot and Sbava, respectively. These findings hold potential for predicting Sb uptake by crops with different soil properties and informing safe production management strategies.


Assuntos
Antimônio , Poluentes do Solo , Solo , Triticum , Antimônio/análise , Antimônio/metabolismo , Triticum/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Solo/química , Agricultura , Produtos Agrícolas/metabolismo , Monitoramento Ambiental/métodos , Ecossistema
14.
J Hazard Mater ; 465: 133408, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183938

RESUMO

The biogeochemical cycling of iron (Fe) or sulfur (S) in paddy soil influences the cadmium (Cd) and arsenic (As) migration. However, the influence of coupled reduction effects and reaction precedence of Fe and S on the bioavailability of Cd and As is still not fully understood. This study aimed to reveal the influence of Fe and S reduction on soil Cd and As mobility under various pe + pH conditions and to elucidate the related mechanism in subtropical China. According to the findings, higher adsorption from Fe reduction caused high-crystalline goethite (pe + pH > 2.80) to become amorphous ferrihydrite, which in turn caused water-soluble Cd (62.0%) to first decrease. Cd was further decreased by 72.7% as a result of the transformation of SO42- to HS-/S2- via sulfate reduction and the formation of CdS and FeS. As release (an increase of 8.1 times) was consequently caused by the initial reduction and dissolution of iron oxide (pe + pH > 2.80). FeS had a lesser impact on the immobilization of As than sulfate-mediated As (V) reduction in the latter stages of the reduction process (pe + pH < 2.80). pe + pH values between 3 and 3.5 should be maintained to minimize the bioavailability of As and Cd in moderate to mildly polluted soil without adding iron oxides and sulfate amendments. The practical remediation of severely co-contaminated paddy soil can be effectively achieved by using Fe and S additions at different pe + pH conditions. This technique shows promise in reducing the bioavailability of Cd and As.

15.
Sci Total Environ ; 937: 173473, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38788936

RESUMO

Cadmium (Cd) contamination in cropland poses a significant threat to the quality of agricultural products, but even though in-situ remediation has been extensively applied, non-selective immobilization remains an issue. In order to develop a material that specifically immobilizes Cd in soil, a layered double hydroxide, intercalated with mercaptosuccinic acid (MSA-CFA), was synthesized through co-precipitation. In this case, the MSA-CFA's maximum adsorption capacity was increased from the 513.8 mg·g-1 for unintercalated hydrotalcite CFA to 692.6 mg·g-1. Besides, MSA-CFA efficiently removed 99.25 % of Cd from soil water-extract solution and immobilized up to 70.03 % of bio-available Cd. However, interestingly, its immobilization effects on beneficial metal elements Fe, Mn and Zn were milder, being equivalent to 2/7, 5/7 and 1/2 that of lime, respectively. Moreover, XRD and XPS techniques revealed isomorphous substitution with calcium and sulfhydryl complexation during the Cd adsorption by MSA-CFA. Compared with CFA, the increased adsorption capacity of MSA-CFA for Cd was due to intercalated MSA acting as a new adsorption site, while the enhanced selectivity was contributed by sulfhydryl's affinity for Cd. Altogether, MSA-CFA showed great promise as a competitive and highly efficient candidate amendment in Cd-contaminated soil remediation.

16.
J Environ Manage ; 122: 8-14, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23542226

RESUMO

Lead (Pb) contamination of soil poses severe health risks to humans through vegetable consumption. The variations of Pb concentration in different parts of rootstalk vegetables (radish, carrot and potato) were investigated by using twelve cultivars grown in acidic Ferralsols and neutral Cambisols under two Pb treatments (125 mg kg(-1) and 250 mg kg(-1) for Ferralsols; 150 mg kg(-1) and 300 mg kg(-1) for Cambisols) in a pot experiment. The Pb concentration in edible parts was higher in Ferralsols under two Pb treatments, with range from 0.28 to 4.14, 0.42-10.66 mg kg(-1) (fresh weight) respectively, and all of them exceeded the food safety standard (0.1 mg kg(-1)) recommended by the Codex Alimentarius Commission of FAO and WHO. The Pb concentration in edible parts was significantly affected by genotype, soil type and the interaction between these two factors. The variation of Pb concentration in different cultivars was partially governed by Pb absorption and the transfer of Pb from aerial to edible part. The results revealed that caution should be paid to the cultivation of rootstalk vegetables in Pb-contaminated Ferralsols without any agronomic management to reduce Pb availability and plant uptake. For Cambisols with slight to moderate Pb contamination, growing potato cultivar Shandong No.1 and Chongqing No.1 was effective in reducing the risk of Pb entering human food chain. The results suggest the possibility of developing cultivar- and soil-specific planting and monitoring guidelines for the cultivation of rootstalk vegetables on slight to moderate Pb-contaminated soils.


Assuntos
Inocuidade dos Alimentos , Chumbo/análise , Verduras/química , Genótipo , Poluentes do Solo/análise , Verduras/genética
17.
J Hazard Mater ; 442: 130091, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206714

RESUMO

The increasing One-Health concept calls for a more in-depth understanding of the dissemination of antibiotic resistance in plant microbiomes. While there is considerable published evidence that microplastics can promote the spread of antibiotic resistance genes (ARGs) in the environment, whether and how microplastics impact the plant endophytic resistome are largely unknown. Here we examined the ARGs along the soil-root continuum of maize and wheat under the pressure of microplastics. Amendment with heavy metals was also included as they can apply the selective pressure for ARG spread as well. The crop species and genotypes had significant effects on the root endophytic ARG abundance and diversity. The greatest ARG abundance was observed in the maize ZD958 endophytes (0.215 copies per 16S rRNA gene), followed by the maize XY335 (0.092 copies per 16S rRNA gene). For each crop genotype, amendment with microplastics and heavy metals significantly increased the ARG abundances and changed their profiles in root endophytes. The endophytic ARG variances were closely associated with the endophytic microbiome, the rhizosphere bacterial communities and resistome. Additionally, the level of endophytic ARGs was positively relevant to the abundance of mobile genetic elements (MGEs). These findings suggested that the root endophytic resistome was primarily affected by the crop species, and microplastics might show enhancement effects on the endophytic resistome via changing the root-associated microbiome and facilitating the MGE mediation. Overall, this study, for the first time, highlights the root endophytic ARG emergence and dissemination induced by microplastics.


Assuntos
Antibacterianos , Microplásticos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Plásticos , Genes Bacterianos , Solo , Endófitos
18.
Bioresour Technol ; 371: 128540, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581234

RESUMO

Antibiotic-degrading bacteria are commonly used to treat antibiotic contamination, but the antibiotic resistance genes (ARGs) they carry are often overlooked. This study used metagenomic assembly and binning analyses to explore potential antibiotic-degrading bacteria and their ARGs during pig manure composting. The result showed that 35 metagenome-assembled genomes (MAGs) mainly containing alkyl-aryl transferase and decarboxylase genes involved in the removal of antibiotics. Multidrug (124), ß-lactam (67), macrolide-lincosamide-streptogramin (MLS) (64), and tetracycline (43) were the central ARG types detected in the 35 MAGs. Furthermore, the risk of ARGs was evaluated using the arg_ranker framework, and 19 MAGs were found to contain intermediate-high-risk ARGs with human-associated-enrichment, gene transferability, and host pathogenicity. Bin 34 of the genus of Geofilum had the highest ARG risk. Bin 6, Bin 11 and Bin 14 of the genus of Limnochorda, Chelatococcus and Niabella, had a lower ARG risk and were considered as potential antibiotic-degrading bacteria.


Assuntos
Compostagem , Esterco , Suínos , Humanos , Animais , Esterco/microbiologia , Genes Bacterianos/genética , Metagenoma , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética
19.
Huan Jing Ke Xue ; 44(2): 1003-1011, 2023 Feb 08.
Artigo em Zh | MEDLINE | ID: mdl-36775623

RESUMO

In order to understand the differences in the uptake and accumulation of several common exogenous selenium fertilizers by crops, a wheat pot experiment was conducted to study the availability changes in different selenium fertilizers (potassium selenate, potassium selenite, EDTA-chelated selenium, selenium powder, fly ash, and selenium-enriched straw) in soil and their effects on wheat growth and selenium uptake and distribution. The results showed that the change in availability of different exogenous selenium types in soil was different. During the whole growth period of wheat, the soil available selenium proportion of selenate, selenite, and EDTA-chelated selenium treatment was significantly higher than that of the control (CK), respectively, but there was no significant difference between the other treatments and the CK treatment. In the early stage of wheat growth, the soil available selenium proportion of selenate, selenite, and selenium powder treatment decreased gradually and tended to be stable in the later growth stage of wheat; however, the soil available selenium proportion of other exogenous selenium treatments showed a dynamic change of decreasing in the early period and increasing in the late period. The available selenium content in soil significantly affected the selenium uptake by wheat, and there was a significant positive correlation between them. Selenate application significantly increased the grain and leaf biomass of wheat, but other selenium fertilizers had no significant effect on wheat growth. The accumulation capacity of different exogenous selenium fertilizers for wheat followed the order of selenate>selenite, EDTA-chelated selenium>selenium powder, fly ash, and selenium-enriched straw. There was no significant difference between the selenium powder, fly ash, and selenium-enriched straw treatments and the CK treatment. Selenium was more easily transferred to and accumulated in the stems and leaves of wheat after the application of selenate, whereas selenium was more easily transferred to and accumulated in grains after the application of selenite and EDTA-chelated selenium.


Assuntos
Selênio , Solo , Ácido Selênico , Triticum , Fertilizantes/análise , Cinza de Carvão , Ácido Edético , Pós , Ácido Selenioso
20.
Sci Total Environ ; 869: 161742, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690118

RESUMO

Antibiotic resistance gene (ARG)-contaminated food from manure application is gaining widespread interest, but little is known about the distribution and uptake of ARGs in peanuts that are subjected to manure routinely. In this study, the ARG profile and bacterial community in soil and peanut plants from a 7-year manure-fertilized field were investigated using high-throughput qPCR and 16S rRNA gene sequencing. Manure application increased the abundance of ARGs in soil and peanuts by 59-72 and 4-10 fold, respectively. The abundance of ARGs from high to low was as follows: manure, shell-sphere soil, rhizosphere soil, bulk soil, stems, shells, needles, kernels, and roots. Source-tracker analyses were used to investigate the potential source of ARGs in peanut kernels, which revealed that the ARGs in peanut kernels may be primarily absorbed by the roots from the soil. The horizontal gene transfer (HGT) of ARGs was the primary factor in the spread of ARGs, and Proteobacteria were the primary agents of HGT between different parts of peanut plants. Additionally, norank_Chloroplast from the phylum Cyanobacteria was the most important contributor to the abundance of ARGs in peanut kernels. Overall, our findings fill a gap in our understanding of the distribution patterns of ARGs in peanut plants and the migratory pathways of ARGs from soil to peanut kernels.


Assuntos
Antibacterianos , Solo , Antibacterianos/farmacologia , Arachis , Genes Bacterianos , Esterco/análise , RNA Ribossômico 16S/genética , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA