Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2211538119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191233

RESUMO

Efficient molecular selection is a prerequisite for generating molecular tools used in diagnosis, pathology, vaccinology, and therapeutics. Selection efficiency is thermodynamically highly dependent on the dissociation equilibrium that can be reached in a single round. Extreme shifting of equilibrium towards dissociation favors the retention of high-affinity ligands over those with lower affinity, thus improving the selection efficiency. We propose to synergize dual effects by deterministic lateral-displacement microfluidics, including the collision-based force effect and the two-dimensional (2D) separation-based concentration effect, to greatly shift the equilibrium. Compared with previous approaches, this system can remove more low- or moderate-affinity ligands and maintain most high-affinity ligands, thereby improving affinity discrimination in selection. This strategy is demonstrated on phage display in both experiment and simulation, and two peptides against tumor markers ephrin type-A receptor 2 (EphA2) and CD71 were obtained with high affinity and specificity within a single round of selection, which offers a promising direction for discovery of robust binding ligands for a wide range of biomedical applications.


Assuntos
Microfluídica , Peptídeos , Biomarcadores Tumorais , Efrinas , Ligantes , Peptídeos/química
2.
Langmuir ; 40(29): 15205-15213, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990344

RESUMO

The size or the curvature of nanoparticles (NPs) plays an important role in regulating the composition of the protein corona. However, the molecular mechanisms of how curvature affects the interaction of NPs with serum proteins still remain elusive. In this study, we employ all-atom molecular dynamics simulations to investigate the interactions between two typical serum proteins and PEGylated Au NPs with three different surface curvatures (0, 0.1, and 0.5 nm-1, respectively). The results show that for proteins with a regular shape, the binding strength between the serum protein and Au NPs decreases with increasing curvature. For irregularly shaped proteins with noticeable grooves, the binding strength between the protein and Au NPs does not change obviously with increasing curvature in the cases of smaller curvature. However, as the curvature continues to increase, Au NPs may act as ligands firmly adsorbed in the protein grooves, significantly enhancing the binding strength. Overall, our findings suggest that the impact of NP curvature on protein adsorption may be nonmonotonic, which may provide useful guidelines for better design of functionalized NPs in biomedical applications.


Assuntos
Ouro , Nanopartículas Metálicas , Simulação de Dinâmica Molecular , Ouro/química , Nanopartículas Metálicas/química , Proteínas Sanguíneas/química , Propriedades de Superfície , Ligação Proteica , Polietilenoglicóis/química , Adsorção , Humanos
3.
Langmuir ; 40(2): 1295-1304, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38173387

RESUMO

The fluorinated decorations have recently been widely used in many biomedical applications. However, the potential mechanism of the fluorination effect on the cellular delivery of nanoparticles (NPs) still remains elusive. In this work, we systemically explore the penetration of a perfluoro-octanethiol-coated gold NP (PF-Au NP) and, for comparison, an octanethiol-coated gold NP (OT-Au NP) across lipid bilayers. We also investigated the effect of these two types of NPs on the properties of lipid bilayers. Our findings indicate that the lipid type and the surface tension of the lipid bilayer significantly impact the penetration capabilities of the fluorinated gold NP. By examining the distribution of ligands on the surface of the two types of NPs in water and during the penetration process, we unveil their distinct penetration characteristics. Specifically, the PF-Au NP exhibits amphiphobic behavior (both hydrophobic and lipophobic), while the OT-Au NP exhibits solely hydrophobic characteristics. Finally, we observe that the penetration capabilities can be increased by adjusting the degree of fluorination of the ligands on the NP surface. Overall, this study provides useful physical insights into the unique properties of the fluorinated decorations in NP permeation.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Bicamadas Lipídicas/química , Halogenação , Nanopartículas Metálicas/química , Nanopartículas/química , Modelos Moleculares , Ouro/química , Ligantes
4.
Phys Chem Chem Phys ; 26(18): 13751-13761, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683175

RESUMO

Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.


Assuntos
Simulação de Dinâmica Molecular , Neurotransmissores , Serotonina , Radiação Terahertz , Ácido gama-Aminobutírico , Neurotransmissores/química , Ácido gama-Aminobutírico/química , Serotonina/química , Serotonina/metabolismo , Nicotina/química , Epinefrina/química
5.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38349628

RESUMO

Biomolecular condensates formed by multicomponent phase separation play crucial roles in diverse cellular processes. Accurate assessment of individual-molecule contributions to condensate formation and precise characterization of their spatial organization within condensates are crucial for understanding the underlying mechanism of phase separation. Using molecular dynamics simulations and graph theoretical analysis, we demonstrated quantitatively the significant roles of cation-π and π-π interactions mediated by aromatic residues and arginine in the formation of condensates in polypeptide systems. Our findings reveal temperature and chain length-dependent alterations in condensate network parameters, such as the number of condensate network layers, and changes in aggregation and connectivity. Notably, we observe a transition between assortativity and disassortativity in the condensate network. Moreover, polypeptides W, Y, F, and R consistently promote condensate formation, while the contributions of other charged and two polar polypeptides (Q and N) to condensate formation depend on temperature and chain length. Furthermore, polyadenosine and polyguanosine can establish stable connections with aromatic and R polypeptides, resulting in the reduced involvement of K, E, D, Q, and N in phase separation. Overall, this study provides a distinctive, precise, and quantitative approach to characterize the multicomponent phase separation.

6.
Proteins ; 91(8): 1140-1151, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37086011

RESUMO

The specific recognition of serum proteins by scavenger receptors is critical and fundamental in many biological processes. However, the underlying mechanism of scavenger receptor-serum protein interaction remains elusive. In this work, taking scavenger receptors class A1 (SR-A1) as an example, we systematically investigate its interaction with human serum albumin (HSA) at different states through a combination of molecular docking and all-atom molecular dynamics simulations. It is found that native HSA can moderately bind to collagen-like (CL) region or scavenger receptor cysteine-rich (SRCR) region, with both electrostatic (ELE) and van der Waals (VDW) interactions, playing important roles. After maleylation, the binding energy, particularly the ELE energy, between HSA and CL region is significantly enhanced, while the binding energy between HSA and SRCR region remains nearly unchanged. Additionally, we also observe that unfolding of the secondary structures in HSA leads to a larger contact surface area between denatured HSA and CL region, but has little impact on the HSA-SRCR region interaction. Therefore, similar to maleylated HSA, denatured HSA is also more likely to bind to the CL region of SR-A1.


Assuntos
Albumina Sérica Humana , Humanos , Simulação de Acoplamento Molecular , Sítios de Ligação , Espectrometria de Fluorescência , Termodinâmica , Albumina Sérica Humana/metabolismo , Receptores Depuradores/metabolismo , Ligação Proteica , Dicroísmo Circular
7.
Phys Chem Chem Phys ; 25(41): 28034-28042, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37846110

RESUMO

Nanopore-based biomolecule detection has emerged as a promising and sought-after innovation, offering high throughput, rapidity, label-free analysis, and cost-effectiveness, with potential applications in personalized medicine. However, achieving efficient and tunable biomolecule capture into the nanopore remains a significant challenge. In this study, we employ all-atom molecular dynamics simulations to investigate the capture of double-stranded DNA (dsDNA) molecules into graphene nanopores with varying positive charges. We discover a non-monotonic relationship between the DNA capture rate and the charge of the graphene nanopore. Specifically, the capture rate initially decreases and then increases with an increase in nanopore charge. This behavior is primarily attributed to differences in the electrophoretic force, rather than the influence of electroosmosis or counterions. Furthermore, we also observe this non-monotonic trend in various ionic solutions, but not in ionless solutions. Our findings shed light on the design of novel DNA sequencing devices, offering valuable insights into enhancing biomolecule capture rates in nanopore-based sensing platforms.


Assuntos
Grafite , Nanoporos , DNA/análise , Simulação de Dinâmica Molecular , Eletroforese
8.
Angew Chem Int Ed Engl ; 62(21): e202215337, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36959092

RESUMO

Isolation and analysis of tumor-derived extracellular vesicles (T-EVs) are important for clinical cancer management. Here, we develop a fluid multivalent magnetic interface (FluidmagFace) in a microfluidic chip for high-performance isolation, release, and protein profiling of T-EVs. The FluidmagFace increases affinity by 105-fold with fluidity-enhanced multivalent binding to improve isolation efficiency by 13.9 % compared with a non-fluid interface. Its anti-adsorption property and microfluidic hydrodynamic shear minimize contamination, increasing detection sensitivity by two orders of magnitude. Moreover, its reversibility and expandability allow high-throughput recovery of T-EVs for mass spectrometric protein analysis. With the chip, T-EVs were detected in all tested cancer samples with identification of differentially expressed proteins compared with healthy controls. The FluidmagFace opens a new avenue to isolation and release of targets for cancer diagnosis and biomarker discovery.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Proteômica , Vesículas Extracelulares/química , Neoplasias/metabolismo , Microfluídica , Fenômenos Magnéticos
9.
Langmuir ; 38(45): 13972-13982, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36318181

RESUMO

The spread of coronavirus disease 2019 caused by SARS-CoV-2 and its variants has become a global health crisis. Although there were many attempts to use nanomaterials-based devices to fight against SARS-CoV-2, it still remains elusive as to how the nanomaterials interact with SARS-CoV-2 and affect its biofunctions. Here, taking the graphene nanosheet (GN) as the model nanomaterial, we investigate its interaction with the spike protein in both WT and Omicron by molecular simulations. In the closed state, the GN can insert into the region between the receptor binding domain (RBD) and the N-terminal domain (NTD) in both wild type (WT) and Omicron, which keeps the RBD in the down conformation. In the open state, the GN can hamper the binding of up RBD to ACE2 in WT, but it has little impact on up RBD and, even worse, stimulates the down-to-up transition of down RBDs in Omicron. Moreover, the GN can insert in the vicinity of the fusion peptide in both WT and Omicron and prevents the detachment of S1 from the whole spike protein. The present study reveals the effect of the SARS-CoV-2 variant on the nanomaterial-spike protein interaction, which informs prospective efforts to design functional nanomaterials against SARS-CoV-2.


Assuntos
COVID-19 , Grafite , Humanos , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A/metabolismo , Estudos Prospectivos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Nanoestruturas
10.
Phys Chem Chem Phys ; 24(23): 14339-14347, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35642694

RESUMO

Protein-ligand interactions are crucial in many biochemical processes and biomedical applications, yet accurately calculating the binding free energy of the interactions still remains challenging. In this work, we systematically investigate the performance of a generic force field GFN-FF and some semi-empirical quantum mechanical (SQM) methods (GFNn, n = 0, 1, 2) in terms of the accuracy of the calculated binding free energy. It is found that the performance of the GFN-FF method is quite good in a neutral-ligand system since the Pearson correlation coefficient (rp) is 0.70 and the mean absolute error (MAE) is 5.49 kcal mol-1. However, it may fail in a charged-ligand system (the MAE is 18.98 kcal mol-1). Moreover, we also propose a cluster model (i.e., truncating the protein at a given cutoff) along with the SQM method in the GFN family. Importantly, the GFN2-xTB shows the best performance among the SQM methods (the MAE is 4.91 kcal mol-1 and 10.25 kcal mol-1 in the neutral-ligand and charged-ligand systems, respectively), much better than GFN-FF in the charged-ligand system. Notably, the computing cost of the GFN2-xTB in the appropriate cluster model is even lower than that of the GFN-FF (in the entire complex). The present study sheds some light on the potential power of the GFN family in the efficient calculation of the binding free energy in bio-systems.


Assuntos
Proteínas , Entropia , Ligantes , Ligação Proteica , Termodinâmica
11.
Langmuir ; 37(40): 11707-11715, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570511

RESUMO

The unconjugated bilirubin (BR) may penetrate through the cell membrane and cause a severe cytotoxicity. However, the molecular mechanism underlying the penetration of BR into the cell membrane is still largely unknown. In this work, we systematically investigate the interaction of BR and a lipid bilayer under different conditions by using all-atom molecular dynamics simulations. It is found that BR at the Z,Z conformation can easily enter into the interior of the lipid bilayer due to its hydrophobicity. However, when BR transforms from the Z,Z conformation to the E,E conformation (after the blue-light emission), its penetration ability is greatly reduced (especially at its ionized state). This study may offer useful physical insights into the effect of phototherapy on the penetration behavior and the cytotoxicity of the unconjugated BR.


Assuntos
Bilirrubina , Bicamadas Lipídicas , Membrana Celular , Conformação Molecular , Simulação de Dinâmica Molecular
12.
J Chem Inf Model ; 61(5): 2454-2462, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33939423

RESUMO

Accurate calculation of protein-protein binding free energy is of great importance in biological and medical science, yet it remains a hugely challenging problem. In this work, we develop a new strategy in which a screened electrostatic energy (i.e., adding an exponential damping factor to the Coulombic interaction energy) is used within the framework of the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method. Our results show that the Pearson correlation coefficient in the modified MM/PBSA is over 0.70, which is much better than that in the standard MM/PBSA, especially in the Amber14SB force field. In particular, the performance of the standard MM/PBSA is very poor in a system where the proteins carry like charges. Moreover, we also calculated the mean absolute error (MAE) between the calculated and experimental ΔG values and found that the MAE in the modified MM/PBSA was indeed much smaller than that in the standard MM/PBSA. Furthermore, the effect of the dielectric constant of the proteins and the salt conditions on the results was also investigated. The present study highlights the potential power of the modified MM/PBSA for accurately predicting the binding energy in highly charged biosystems.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Eletricidade Estática , Termodinâmica
13.
J Am Chem Soc ; 142(10): 4800-4806, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049531

RESUMO

The ubiquitous biomembrane interface, with its dynamic lateral fluidity, allows membrane-bound components to rearrange and localize for high-affinity multivalent ligand-receptor interactions in diverse life activities. Inspired by this, we herein engineered a fluidic multivalent nanointerface by decorating a microfluidic chip with aptamer-functionalized leukocyte membrane nanovesicles for high-performance isolation of circulating tumor cells (CTCs). This fluidic biomimetic nanointerface with active recruitment-binding afforded significant affinity enhancement by 4 orders of magnitude, exhibiting 7-fold higher capture efficiency compared to a monovalent aptamer functionalized-chip in blood. Meanwhile, this soft nanointerface inherited the biological benefits of a natural biomembrane, minimizing background blood cell adsorption and maintaining excellent CTC viability (97.6%). Using the chip, CTCs were successfully detected in all cancer patient samples tested (17/17), suggesting the high potential of this fluidity-enhanced multivalent binding strategy in clinical applications. We expect this bioengineered interface strategy will lead to the design of innovative biomimetic platforms in the biomedical field by leveraging natural cell-cell interaction with a natural biomaterial.


Assuntos
Aptâmeros de Nucleotídeos/química , Membrana Celular/química , Separação Celular/métodos , Nanoestruturas/química , Células Neoplásicas Circulantes/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Separação Celular/instrumentação , Sobrevivência Celular , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Leucócitos/química , Masculino , Microfluídica/instrumentação , Microfluídica/métodos , Pessoa de Meia-Idade
14.
Environ Sci Technol ; 54(23): 15215-15224, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33169997

RESUMO

Natural organic matter (NOM) that forms coronas on the surface of engineered nanoparticles (NPs) affects their stability, bio-uptake, and toxicity. After corona formation, a large amount of unbound NOM remains in the environment and their effects on organismal uptake of NPs remain unknown. Here, the effects of unbound NOM on the uptake of polyacrylate-coated hematite NPs (HemNPs) by the protozoan Tetrahymena thermophila were examined. HemNPs were well-dispersed without any detectable NOM adsorption. Kinetics experiments showed that unbound NOM decreased the uptake of HemNPs with greater inhibition at lower concentrations of the particles in the presence of NOM of higher molecular weight. The unbound NOM suppressed clathrin-mediated endocytosis but not the phagocytosis of HemNPs. Confirmation of these events was obtained using label-free hyperspectral stimulated Raman spectroscopy imaging and dissipative particle dynamics simulation. Overall, the present study demonstrates that unbound NOM can compete with HemNPs for internalization receptors on the surface of T. thermophila and inhibit particle uptake, highlighting the need to consider the direct effects of unbound NOM in bioapplication studies and in safety evaluations of NPs.


Assuntos
Nanopartículas , Adsorção , Substâncias Húmicas/análise , Cinética
15.
Phys Chem Chem Phys ; 22(29): 16855-16861, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32666963

RESUMO

Selective ion transport through a nanochannel formed by stacked two-dimensional materials plays a key role in water desalination, nanofiltration, and ion separation. Although there have been many functional nanomaterials used in these applications, how to well control ion transport in a laminar structure so as to obtain the desired selectivity still remains a challenging problem. In the present work, the transport of ions through a C2N-based nanochannel is investigated by using all-atom molecular dynamics simulation. It is found that C2N-based nanochannels with different interlayer spacing posses diverse ion selectivity, which is mainly attributed to the distinct loading capability among ions and the different velocity of ions inside the nanochannel. Moreover, we also find that the ion selectivity is dependent on the electric field, but nearly independent of the salt concentration. The present study may provide some physical insights into the experimental design of C2N-based nanodevices in nanofiltration.

16.
Angew Chem Int Ed Engl ; 59(24): 9617-9623, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32147901

RESUMO

A protein Pascal triangle has been constructed as new type of supramolecular architecture by using the inducing ligand strategy that we previously developed for protein assemblies. Although mathematical studies on this famous geometry have a long history, no work on such Pascal triangles fabricated from native proteins has been reported so far due to their structural complexity. In this work, by carefully tuning the specific interactions between the native protein building block WGA and the inducing ligand R-SL, a 2D Pascal-triangle lattice with three types of triangular voids has been assembled. Moreover, a 3D crystal structure was obtained based on the 2D Pascal triangles. The distinctive carbohydrate binding sites of WGA and the intralayer as well as interlayer dimerization of RhB was the key to facilitate nanofabrication in solution. This strategy may be applied to prepare and explore various sophisticated assemblies based on native proteins.

17.
J Am Chem Soc ; 141(47): 18910-18915, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31691568

RESUMO

Receptor-ligand interactions (RLIs) that play pivotal roles in living organisms are often depicted with the classic keys-and-locks model. Nevertheless, RLIs on the cell surface are generally highly complex and nonlinear, partially due to the noncontinuous and dynamic distribution of receptors on extracellular membranes. Here, we develop a tetrahedral DNA framework (TDF)-programmed approach to topologically engineer RLIs on the cell membrane, which enables active recruitment-binding of clustered receptors for high-affinity capture of circulating tumor cells (CTCs). The four vertices of a TDF afford orthogonal anchoring of ligands with spatial organization, based on which we synthesized n-simplexes harboring 1-3 aptamers targeting epithelial cell adhesion molecule (EpCAM) that are overexpressed on the membrane of tumor cells. The 2-simplex with three aptamers not only shows increased binding affinity (∼19-fold) but prevents endocytosis by cells. By using 2-simplex as the capture probe, we demonstrate the high-efficiency CTC capture, which is challenged in real clinical breast cancer patient samples. This TDF-programmed platform thus provides a powerful means for studying RLIs in physiological settings and for cancer diagnosis.


Assuntos
Separação Celular/métodos , DNA/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Células Neoplásicas Circulantes/patologia , Engenharia de Proteínas , Aptâmeros de Nucleotídeos/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Humanos , Ligantes , Células MCF-7
18.
J Am Chem Soc ; 141(40): 16014-16023, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31509391

RESUMO

To explore a new supramolecular interaction as the main driving force to induce hierarchical self-assembly (HSA) is of great importance in supramolecular chemistry. Herein, we present a radical-induced HSA process through the construction of well-defined rhomboidal metallacycles containing triphenylamine (TPA) moieties. The light-induced radical generation of the TPA-based metallacycle has been demonstrated, which was found to subsequently drive hierarchical self-assembly of metallacycles in both solution and solid states. The morphologies of nanovesicle structures and nanospheres resulting from hierarchical self-assembly have been well-illustrated by using TEM and high-angle annular dark-field STEM (HAADF-STEM) micrographs. The mechanism of HSA is supposed to be associated with the TPA radical interaction and metallacycle stacking interaction, which has been supported by the coarse-grained molecular dynamics simulations. This study provides important information to understand the fundamental TPA radical interaction, which thus injects new energy into the hierarchical self-assembly of supramolecular coordination complexes (SCCs). More interestingly, the stability of TPA radical cations was significantly increased in these metallacycles during the hierarchical self-assembly process, thereby opening a new way to develop stable organic radical cations in the future.

19.
J Am Chem Soc ; 141(1): 583-591, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30496688

RESUMO

As a common phenomenon in biological systems, supramolecular transformations of biomacromolecules lead to specific biological functions as outputs, which thus inspire people to construct biomimetic dynamic systems through supramolecular transformation strategy. It should be noted that well-modulating the artificial macromolecules to fine-tune their properties is of great significance yet still remains a big challenge in polymer chemistry. In this study, through the combination of coordination-driven self-assembly and postassembly ring-opening polymerization, a six-armed star polymer linked by well-defined hexagonal metallacycle as core was successfully prepared. At the same time, the trans-platinum acetylide moieties as transformation sites were anchored onto the discrete metallacycle scaffold. Subsequently, the simple phosphine ligand-exchange reaction induced the conversions of platinum acetylide building blocks with the varied binding angles, which thus resulted in the successive hexagon-rhomboid-hexagon transformations of metallacyclic scaffold, therefore allowing for the corresponding supramolecular transformation of metallacycle-linked star polymers. More importantly, accompanied by such transformation process, property modulation of the resultant polymers has been successfully realized. In a word, by taking advantage of dynamic nature of metal-ligand coordination bonds and simple phosphine ligand-exchange reactions, facile architecture transformation of a star polymer to a linear polymer and back to a star polymer was successfully realized, which may provide a promising approach toward the construction of new dynamic polymeric materials.

20.
Langmuir ; 35(39): 12851-12857, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31474103

RESUMO

The well control over the cell-nanoparticle interaction can be of great importance and necessity for different biomedical applications. In this work, we propose a new and simple way (i.e., polymeric tether) to tuning the interaction between nanoparticles and cell membranes by dissipative particle dynamics simulations. It is found that the linked nanoparticles (via polymeric tether) can show some cooperation during the cellular uptake and thereby have a higher wrapping degree than the single nanoparticle. The effect of the property of the polymer on the wrapping is also investigated, and it is found that the length, rigidity, and hydrophobicity of the polymer play an important role. More interestingly, the uptake of linked nanoparticles could be adjusted to the firm adhesion via two rigid polymeric tethers. The present study may provide some useful guidelines for novel design of functional nanomaterials in the experiments.


Assuntos
Membrana Celular/química , Nanopartículas/química , Polímeros/química , Éteres/química , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA