Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(3): 1383-1395, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481932

RESUMO

In response to stressful events, the hypothalamic-pituitary-adrenal (HPA) axis is activated, and consequently glucocorticoids are released by the adrenal gland into the blood circulation. A large body of research has illustrated that excessive glucocorticoids in the hippocampus exerts negative feedback regulation of the HPA axis through glucocorticoid receptor (GR), which is critical for the homeostasis of the HPA axis. Maternal prenatal stress causes dysfunction of the HPA axis feedback mechanism in their offspring in adulthood. Here we report that telomerase reverse transcriptase (TERT) gene knockout causes hyperactivity of the HPA axis without hippocampal GR deficiency. We found that the level of TERT in the dentate gyrus (DG) of the hippocampus during the developmental stage determines the responses of the HPA axis to stressful events in adulthood through modulating the excitability of the dentate granular cells (DGCs) rather than the expression of GR. Our study also suggests that the prenatal high level of glucocorticoids exposure-induced hypomethylation at Chr13:73764526 in the first exon of mouse Tert gene accounted for TERT deficiency in the DG and HPA axis abnormality in the adult offspring. This study reveals a novel GR-independent mechanism underlying prenatal stress-associated HPA axis impairment, providing a new angle for understanding the mechanisms for maintaining HPA axis homeostasis.


Assuntos
Sistema Hipotálamo-Hipofisário , Receptores de Glucocorticoides , Feminino , Gravidez , Animais , Camundongos , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Homeostase
2.
Hum Genomics ; 15(1): 55, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419170

RESUMO

Whether microRNAs (miRNAs) from plasma exosomes might be dysregulated in patients with depression, especially treatment-resistant depression (TRD), remains unclear, based on study of which novel biomarkers and therapeutic targets could be discovered. To this end, a small sample study was performed by isolation of plasma exosomes from patients with TRD diagnosed by Hamilton scale. In this study, 4 peripheral plasma samples from patients with TRD and 4 healthy controls were collected for extraction of plasma exosomes. Exosomal miRNAs were analyzed by miRNA sequencing, followed by image collection, expression difference analysis, target gene GO enrichment analysis, and KEGG pathway enrichment analysis. Compared with the healthy controls, 2 miRNAs in the plasma exosomes of patients with TRD showed significant differences in expression, among which has-miR-335-5p were significantly upregulated and has-miR-1292-3p were significantly downregulated. Go and KEGG analysis showed that dysregulated miRNAs affect postsynaptic density and axonogenesis as well as the signaling pathway of axon formation and cell growths. The identification of these miRNAs and their target genes may provide novel biomarkers for improving diagnosis accuracy and treatment effectiveness of TRD.


Assuntos
Transtorno Depressivo Resistente a Tratamento/genética , Exossomos/genética , MicroRNAs/genética , Adolescente , Adulto , Idoso , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA/métodos , Adulto Jovem
3.
Gen Psychiatr ; 37(1): e101291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304710

RESUMO

Background: Increasing evidence supports the role of microRNAs (miRNAs) in major depressive disorder (MDD), but the pathophysiological mechanism remains elusive. Aims: To explore the mechanism of microRNA-451a (miR-451a) in the pathology and behaviours of depression. Methods: Abnormal miRNAs such as miR-451a reported previously in the serum of patients with MDD were screened and then confirmed in a mouse model of depression induced by chronic restraint stress (CRS). Eight-week-old male C57BL/6 mice had miR-451a overexpression in the medial prefrontal cortex (mPFC) via adeno-associated virus serotype 9 vectors encoding a pri-mmu-miR-451a-GFP fusion protein followed by behavioural and pathological analyses. Finally, molecular biological experiments were conducted to investigate the potential mechanism of miR-451a against depression. Results: The serum levels of miRNA-451a were significantly lower in patients with MDD, with a negative correlation with the Hamilton Depression Scale scores. Additionally, a negative association between serum miR-451a and behavioural despair or anhedonia was observed in CRS mice. Notably, miR-451a expression was significantly downregulated in the mPFC of CRS-susceptible mice. Overexpressing miR-451a in the mPFC reversed the loss of dendritic spines and the depression-like phenotype of CRS mice. Mechanistically, miR-451a could inhibit CRS-induced corticotropin-releasing factor receptor 1 expression via targeting transcription factor 2, subsequently protecting dendritic spine plasticity. Conclusions: Together, these results highlighted miR-451a as a candidate biomarker and therapeutic target for MDD.

4.
Front Psychiatry ; 13: 972522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032246

RESUMO

Objective: Genome Wide Association study (GWAS) has revealed that the transmembrane protein 132D (TMEM132D) is a gene of sensitive for panic disorder (PD). As the main type of childhood trauma experience, childhood abuse has become a public health issue attracting much attention at home and abroad, and has been proved to be a risk factor for the onset of PD. However, how it affects the occurrence and development of panic disorder has not yet been revealed. We examined the relationship between TMEM132D methylation, childhood abuse and symptoms based on this finding. Materials and methods: Thirty-two patients with PD and 22 healthy controls (HCs) were recruited after age, gender, and the education level were matched. The DNA methylation levels of CpG sites across the genome were examined with genomic DNA samples (PD, N = 32, controls, N = 22) extracted from subjects' elbow venous blood. A mediation model was used to explore the relationship between the methylation degree of different CpG sites and childhood maltreatment and clinical symptoms. Results: We found that the PD group had significantly lower methylation at CpG1, CpG2, CpG3, CpG4, CpG5, CpG6, CpG7, CpG8, CpG11, CpG14, and CpG18 than did the HCs (p < 0.05). The CpG2 (r = 0.5953, p = 0.0117) site in the priming region of TEME132D gene were positively associated with PDSS score. The CpG2 (r = 0.4889, p = 0.046) site in the priming region of TEME132D gene were positively associated with physical abuse. Furthermore, path analyses showed that the methylation of CpG2 of TMEM132D played a fully mediating role in the relationship between physical abuse and PD symptom severity (95. Conclusion: Childhood abuse experiences, especially physical abuse, are significantly related to PD. The methylation of CpG2 of TMEM132D was shown to have a fully mediating effect between panic disorder and physical abuse. The interaction between TMEM132D methylation and physical abuse can predict panic disorder.

5.
Front Psychiatry ; 13: 853613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686186

RESUMO

Objective: This study aimed to test the hypothesis that the relationship between glutamic acid decarboxylase (GAD) 1 gene methylation and severity of clinical symptoms of panic disorder (PD) is mediated by the effect of GAD1 gene methylation on gray matter volume (GMV) and the effect of GMV on PD. Methods: Panic disorder (n = 24) patients were recruited consecutively from the Affiliated Brain Hospital of Nanjing Medical University through outpatient and public advertising, eligible healthy controls (HCs) (n = 22) were recruited from public advertising. We compared GMV and GAD1 gene methylation in PD and HCs to estimate the differences, and on the basis of the relationship between gray matter volumes and GAD1 gene methylation in PD patients was evaluated, the role of GMV as a mediator of GAD1 gene methylation and PD clinical symptoms was analyzed. Results: Panic disorder patients had significantly lower methylation in the GAD1 promoter region on Cytosine-phosphate-guanine (CPG) 7 than HCs (t = 2.380, p = 0.021). Pearson correlation analysis found a significant negative association between cg171674146 (cg12) site and clinical severity (n = 24, r = -0.456, p = 0.025). Compared to HCs, patients with PD had decreased gray matter volumes in several brain regions, which were also associated with PD severity. Left postcentral gyrus (PoCG) GMV mediated the association between cg12 methylation and PD severity, and there was a significant mediation effect of right angular gyrus (ANG) gray matter volumes on the relationship between cg12 methylation and PD severity. Limitation: No direct results can be derived for methylation patterns in different brain regions; the study is cross-sectional; relatively small size.

6.
Brain Imaging Behav ; 16(2): 888-898, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34668168

RESUMO

Recent neuroimaging studies have identified alterations in activity and connectivity among many brain regions as potential biomarkers for panic disorder. However, the functional connectome of panic disorder is not well understood. Therefore, a graph-theoretical approach was applied in this study to construct functional networks of patients and healthy controls in order to discover topological changes in panic disorder. 31 patients and 33 age and sex matched healthy controls underwent resting-state functional magnetic resonance imaging. Brain networks for each participant were structured using nodes from the Anatomical Automatic Labeling template and edges from connectivity matrices. Then, topological organizations of networks were calculated. Network-based statistical analysis was conducted, and global and nodal properties were compared between patients and controls. Unlike controls, patients with panic disorder displayed a small-world network. Patients also revealed decreased nodal efficiency in right superior frontal gyrus (SFG), middle frontal gyrus (MFG), right superior temporal gyrus (STG), and left middle temporal gyrus (MTG). Decreased functional connectivity was found in panic disorder between right MTG and extensive temporal regions. Among these disrupted regions, the decreased nodal efficiency of SFG showed a positive correlation with clinical symptoms while nodal betweenness centrality in angular gyrus showed a negative correlation. Our results indicated decreased function of global and regional information transmission in panic disorder and emphasized the role of temporal regions in its pathology.


Assuntos
Conectoma , Transtorno de Pânico , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Transtorno de Pânico/diagnóstico por imagem , Lobo Parietal
7.
J Affect Disord ; 303: 340-345, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151673

RESUMO

BACKGROUND: Acrophobia is a prevalent type of specific phobia, which frequently leads to functional impairments and occupational limitations. However, the neural pathology of acrophobia is still largely unknown. METHODS: 26 acrophobic patients and 30 healthy controls were enrolled in this study. All participants underwent a resting-state fMRI scan. Severity of symptoms was evaluated using self-report and behavioral measures. The regional homogeneity (ReHo) and seed-based functional connectivity (FC) were then examined. RESULTS: Compared to controls, acrophobic patients demonstrated higher ReHo in the right fusiform gyrus and lower ReHo in the bilateral superior frontal gyrus. Lower FC of right fusiform gyrus-bilateral caudate, right fusiform gyrus-right parahippocampal gyrus, and left medial superior frontal gyrus-left cuneus was also found in the acrophobia group. Additionally, there were negative correlations between behavior avoidance scores and FC of right fusiform gyrus- right parahippocampal gyrus (r = -0.42, p = 0.04) and between scores of the 7-item generalized anxiety disorder scale and FC of left medial superior frontal gyrus- left cuneus (r = -0.40, p = 0.049) in the acrophobia group. LIMITATIONS: Owing to the cross-sectional design, it was unclear whether the functional abnormalities found in the acrophobic patients were related to state or trait effects. CONCLUSIONS: Preliminary results indicated that acrophobic patients revealed abnormal brain function in orbitofrontal cortex, medial prefrontal cortex, and visual regions. These abnormalities may be helpful in understanding the possible neurobiological mechanism of acrophobia and may serve as potential intervention and prevention targets.


Assuntos
Encéfalo , Transtornos Fóbicos , Mapeamento Encefálico/métodos , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos Fóbicos/diagnóstico por imagem
8.
Front Aging Neurosci ; 14: 835963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992589

RESUMO

Panic disorder (PD) causes serious functional damage and disability and accelerates the process of individual aging. The pathological basis of PD is the same as that of age-related diseases, which is proposed as a new viewpoint in recent years. Memory decline and social functional impairment are common manifestations of accelerated aging in PD. The function of telomerase reverse transcriptase (TERT) and telomere length (TL) is abnormal in patients with aging and PD. However, the molecular mechanism behind remains unclear. The purpose of this study was to explore the relationship between TERT gene expression (including DNA methylation) and the changes in PD aging characteristics (memory and social function). By TERT gene knockout mice, we found that loss of TERT attenuated the acquisition of recent fear memory during contextual fear conditioning. This study reported that a significantly lower methylation level of human TERT (hTERT) gene was detected in PD patients compared with healthy control and particularly decreased CpG methylation in the promoter region of hTERT was associated with the clinical characteristics in PD. Regional homogeneity (ReHo) analysis showed that the methylation of hTERT (cg1295648) influenced social function of PD patients through moderating the function of the left postcentral gyrus (PCG). This indicates that the hTERT gene may play an important role in the pathological basis of PD aging and may become a biological marker for evaluating PD aging. These findings provide multidimensional evidence for the underlying genetic and pathological mechanisms of PD.

9.
Front Hum Neurosci ; 15: 647518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335204

RESUMO

Background: Generalized anxiety disorder (GAD) and panic disorder (PD) are the two severe subtypes of anxiety disorders (ADs), which are similar in clinical manifestation, pathogenesis, and treatment. Earlier studies have taken a whole-brain perspective on GAD and PD in the assumption that intrinsic fluctuations are static throughout the entire scan. However, it has recently been suggested that the dynamic alternations in functional connectivity (FC) may reflect the changes in macroscopic neural activity patterns underlying the critical aspects of cognition and behavior, and thus may act as biomarkers of disease. Methods: In this study, the resting-state functional MRI (fMRI) data were collected from 26 patients with GAD, 22 patients with PD, and 26 healthy controls (HCs). We investigated dynamic functional connectivity (DFC) by using the group spatial independent component analysis, a sliding window approach, and the k-means clustering methods. For group comparisons, the temporal properties of DFC states were analyzed statistically. Results: The dynamic analysis demonstrated two discrete connectivity "States" across the entire group, namely, a more segregated State I and a strongly integrated State II. Compared with HCs, patients with both GAD and PD spent more time in the weakly within-network State I, while performing fewer transitions and dwelling shorter in the integrated State II. Additionally, the analysis of DFC strength showed that connections associated with ADs were identified including the regions that belonged to default mode (DM), executive control (EC), and salience (SA) networks, especially the connections between SA and DM networks. However, no significant difference was found between the GAD and PD groups in temporal features and connection strength. Conclusions: More common but less specific alterations were detected in the GAD and PD groups, which implied that they might have similar state-dependent neurophysiological mechanisms and, in addition, could hopefully help us better understand their abnormal affective and cognitive performances in the clinic.

10.
Front Neurol ; 12: 755270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733233

RESUMO

Objectives: Methylation of the neuronal nitric oxide synthase (NOS1/nNOS) gene has recently been identified as a promising biomarker of psychiatric disorders. NOS1 plays an essential role in neurite outgrowth and may thus affect the microstructure development of white matter (WM) in the corpus callosum (CC), which is known to be altered in panic disorder (PD). We examined the relationship between NOS1 methylation, WM tracts in the CC, and symptoms based on this finding. Methods: Thirty-two patients with PD and 22 healthy controls (HCs) were recruited after age, gender, and the education level were matched. The cell type used was whole-blood DNA, and DNA methylation of NOS1 was measured at 20 CpG sites in the promoter region. Although 25 patients with PD were assessed with the Panic Disorder Severity Scale (PDSS), diffusion tensor imaging (DTI) scans were only collected from 16 participants with PD. Results: We observed that the PD group showed lower methylation than did the HCs group and positive correlations between the symptom severity of PD and methylation at CpG4 and CpG9. In addition, CpG9 methylation was significantly correlated with the fractional anisotropy (FA) and mean diffusivity (MD) values of the CC and its major components (the genu and the splenium) in the PD group. Furthermore, path analyses showed that CpG9 methylation offers a mediating effect for the association between the MD values of the genu of the CC and PD symptom severity (95% CI = -1.731 to -0.034). Conclusions: The results suggest that CpG9 methylation leads to atypical development of the genu of the CC, resulting in higher PD symptom severity, adding support for the methylation of NOS1 as a future prognostic indicator of PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA