Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Dermatol ; 29(1): 4-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30991456

RESUMO

Due to the clinical development of drugs such as secukinumab, ustekinumab and dupilumab, major changes have been achieved in the treatment of patients diagnosed with psoriasis and atopic dermatitis. In academia and the pharmaceutical industry, research is increasingly moving towards the development of bispecific antibodies and multi-specific nanobodies, as there is a compelling need for new treatment modalities for patients suffering from autoimmune or malignant disease. The purpose of this review is to discuss aspects of translational drug development with a particular emphasis on indications such as psoriasis and atopic dermatitis. The identification of biomarkers, the assessment of target organ pharmacokinetic and pharmacodynamics interactions and a wide range of in vitro, ex vivo and in vivo models should contribute to an appropriate prediction of a biological effect in the clinical setting. As human biology may not be perfectly reflected by approaches such as skin equivalents or animal models, novel approaches such as the use of human skin and dermal microperfusion assays in healthy volunteers and patients appear both reasonable and mandatory. These models may indeed generate highly translationally relevant data that have the potential to reduce the failure rate of drugs currently undergoing clinical development.


Assuntos
Fármacos Dermatológicos/farmacologia , Desenvolvimento de Medicamentos , Descoberta de Drogas , Animais , Biomarcadores , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Fármacos Dermatológicos/farmacocinética , Modelos Animais de Doenças , Humanos , Psoríase/tratamento farmacológico , Psoríase/imunologia , Pele/efeitos dos fármacos , Absorção Cutânea
2.
Bioconjug Chem ; 26(3): 383-8, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25629889

RESUMO

Targeted drug-delivery methods are crucial for effective treatment of degenerative joint diseases such as osteoarthritis (OA). Toward this goal, we developed a small multivalent structure as a model drug for the attenuation of cartilage degradation. The DOTAM (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid amide)-based model structure is equipped with the cathepsin D protease inhibitor pepstatin A, a fluorophore, and peptide moieties targeting collagen II. In vivo injection of these soluble probes into the knee joints of mice resulted in 7-day-long local retention, while the drug carrier equipped with a scrambled peptide sequence was washed away within 6-8 h. The model drug conjugate successfully reduced the cathepsin D protease activity as measured by release of GAG peptide. Therefore, these conjugates represent a promising first drug conjugate for the targeted treatment of degenerative joint diseases.


Assuntos
Acetamidas/administração & dosagem , Cartilagem/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Compostos Heterocíclicos com 1 Anel/administração & dosagem , Osteoartrite/tratamento farmacológico , Acetamidas/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Portadores de Fármacos/metabolismo , Compostos Heterocíclicos com 1 Anel/metabolismo , Camundongos , Osteoartrite/metabolismo , Osteoartrite/patologia , Suínos
3.
Sci Transl Med ; 15(681): eabq4419, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724239

RESUMO

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases affecting primarily the joints. Despite successful therapies including antibodies against tumor necrosis factor (TNF) and interleukin-6 (IL-6) receptor, only 20 to 30% of patients experience remission. We studied whether inhibiting both TNF and IL-6 would result in improved efficacy. Using backtranslation from single-cell RNA sequencing (scRNA-seq) data from individuals with RA, we hypothesized that TNF and IL-6 act synergistically on fibroblast-like synoviocytes (FLS) and T cells. Coculture of FLS from individuals with RA and T cells supported this hypothesis, revealing effects on both disease-driving pathways and biomarkers. Combining anti-TNF and anti-IL-6 antibodies in collagen-induced arthritis (CIA) mouse models resulted in sustained long-term remission, improved histology, and effects on bone remodeling pathways. These promising data initiated the development of an anti-TNF/IL-6 bispecific nanobody compound 1, with similar potencies against TNF and IL-6. We observed additive efficacy of compound 1 in a FLS/T cell coculture affecting arthritis and T helper 17 (TH17) pathways. This nanobody compound transcript signature inversely overlapped with described RA endotypes, indicating a potential efficacy in a broader patient population. In summary, we showed superiority of a bispecific anti-TNF/IL-6 nanobody compound or combination treatment over monospecific treatments in both in vitro and in vivo models. We anticipate improved efficacy in upcoming clinical studies.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Animais , Humanos , Camundongos , Artrite Experimental/tratamento farmacológico , Células Cultivadas , Fibroblastos/patologia , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Inibidores do Fator de Necrose Tumoral/metabolismo , Inibidores do Fator de Necrose Tumoral/farmacologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/imunologia
4.
J Med Chem ; 65(2): 1567-1584, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34931844

RESUMO

The serine/threonine kinase SGK1 is an activator of the ß-catenin pathway and a powerful stimulator of cartilage degradation that is found to be upregulated under genomic control in diseased osteoarthritic cartilage. Today, no oral disease-modifying treatments are available and chronic treatment in this indication sets high requirements for the drug selectivity, pharmacokinetic, and safety profile. We describe the identification of a highly selective druglike 1H-pyrazolo[3,4-d]pyrimidine SGK1 inhibitor 17a that matches both safety and pharmacokinetic requirements for oral dosing. Rational compound design was facilitated by a novel hSGK1 co-crystal structure, and multiple ligand-based computer models were applied to guide the chemical optimization of the compound ADMET and selectivity profiles. Compounds were selected for subchronic proof of mechanism studies in the mouse femoral head cartilage explant model, and compound 17a emerged as a druglike SGK1 inhibitor, with a highly optimized profile suitable for oral dosing as a novel, potentially disease-modifying agent for osteoarthritis.


Assuntos
Artrite Experimental/tratamento farmacológico , Modelos Animais de Doenças , Proteínas Imediatamente Precoces/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/química , Animais , Artrite Experimental/enzimologia , Artrite Experimental/patologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/enzimologia , Osteoartrite/patologia , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley
5.
Mol Pain ; 5: 7, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19228393

RESUMO

BACKGROUND: Nerve injury-triggered hyperexcitability in primary sensory neurons is considered a major source of chronic neuropathic pain. The hyperexcitability, in turn, is thought to be related to transcriptional switching in afferent cell somata. Analysis using expression microarrays has revealed that many genes are regulated in the dorsal root ganglion (DRG) following axotomy. But which contribute to pain phenotype versus other nerve injury-evoked processes such as nerve regeneration? Using the L5 spinal nerve ligation model of neuropathy we examined differential changes in gene expression in the L5 (and L4) DRGs in five mouse strains with contrasting susceptibility to neuropathic pain. We sought genes for which the degree of regulation correlates with strain-specific pain phenotype. RESULTS: In an initial experiment six candidate genes previously identified as important in pain physiology were selected for in situ hybridization to DRG sections. Among these, regulation of the Na+ channel alpha subunit Scn11a correlated with levels of spontaneous pain behavior, and regulation of the cool receptor Trpm8 correlated with heat hypersensibility. In a larger scale experiment, mRNA extracted from individual mouse DRGs was processed on Affymetrix whole-genome expression microarrays. Overall, 2552 +/- 477 transcripts were significantly regulated in the axotomized L5DRG 3 days postoperatively. However, in only a small fraction of these was the degree of regulation correlated with pain behavior across strains. Very few genes in the "uninjured" L4DRG showed altered expression (24 +/- 28). CONCLUSION: Correlational analysis based on in situ hybridization provided evidence that differential regulation of Scn11a and Trpm8 contributes to across-strain variability in pain phenotype. This does not, of course, constitute evidence that the others are unrelated to pain. Correlational analysis based on microarray data yielded a larger "look-up table" of genes whose regulation likely contributes to pain variability. While this list is enriched in genes of potential importance for pain physiology, and is relatively free of the bias inherent in the candidate gene approach, additional steps are required to clarify which transcripts on the list are in fact of functional importance.


Assuntos
Neuralgia/genética , Neuropeptídeos/genética , Canais de Sódio/genética , Canais de Cátion TRPM/genética , Animais , Gânglios Espinais/fisiopatologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.9 , RNA Mensageiro/análise , Especificidade da Espécie
6.
Sci Rep ; 8(1): 9408, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925868

RESUMO

Mitochondrial dysfunction is increasingly recognized as a contributor to age-related muscle loss and functional impairment. Therefore, we developed a high throughput screening strategy that enabled the identification of compounds boosting mitochondrial energy production in a human skeletal muscle cell model. Screening of 7949 pure natural products revealed 22 molecules that significantly increased oxygen consumption and ATP levels in myotubes. One of the most potent compounds was the flavanone hesperetin. Hesperetin (10 µM) increased intracellular ATP by 33% and mitochondrial spare capacity by 25%. Furthermore, the compound reduced oxidative stress in primary myotubes as well as muscle tissue in vivo. In aged mice administration of hesperetin (50 mg/kg/d) completely reverted the age-related decrease of muscle fiber size and improved running performance of treated animals. These results provide a novel screening platform for the discovery of drugs that can improve skeletal muscle function in patients suffering from sarcopenia or other disorders associated with mitochondrial dysfunction.


Assuntos
Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Trifosfato de Adenosina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hesperidina/farmacologia , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos
7.
Chem Sci ; 6(11): 6256-6261, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090244

RESUMO

Osteoarthritis (OA) is one of the most common diseases in the aging population. While disease progress in humans is monitored indirectly by X-ray or MRI, small animal OA lesions detection always requires surgical intervention and histology. Here we introduce bimodal MR/NIR probes based on cartilage-targeting 1,4,7,10-tetraazacyclododecane 1,4,7,10-tetraacetic acid amide (DOTAM) that are directly administered to the joint cavity. We demonstrate applications in healthy and diseased rat joints by MRI in vivo. The same joints are inspected post-mortem by fluorescence microscopy, showing not only the precise location of the reagents but also revealing details such as focal cartilage damage and chondrophyte or osteophyte formation. This allows for determining the distinct pathological state of the disease and the regeneration capability of the animal model and will help to correctly assess the effect of potential disease modifying OA drugs (DMOADs) in the future.

8.
Neuroreport ; 15(13): 2071-5, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15486484

RESUMO

Proteinase-activated receptor 2 (PAR-2) is expressed on many nociceptive neurons. Application of PAR-2 agonists has been shown to induce behavioral signs of hyperalgesia. We investigated effects of the rat PAR-2 agonist SLIGRL-NH2 in the isolated rat skin-saphenous nerve preparation. SLIGRL-NH2 (100 microM) excited 20% of all C-fiber nociceptors tested. In addition, C-fiber nociceptors were sensitized to heat after SLIGRL-NH2 application resulting in an increase in response magnitude and a decrease of heat threshold. The PAR-2-inactive control peptide LRGILS-NH2 had no effect. The mechanical sensitivity of C-fibers was not affected by SLIGRL-NH2. PAR-2-mediated excitation and sensitization of primary nociceptors may contribute to PAR-2-mediated hyperalgesia.


Assuntos
Temperatura Alta , Nociceptores/fisiologia , Limiar da Dor/fisiologia , Receptor PAR-2/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/efeitos da radiação , Animais , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Fibras Nervosas Amielínicas/efeitos da radiação , Nociceptores/efeitos dos fármacos , Nociceptores/efeitos da radiação , Oligopeptídeos/farmacologia , Dor/metabolismo , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Estimulação Física/métodos , Ratos , Ratos Wistar , Receptor PAR-2/agonistas , Receptor PAR-2/efeitos dos fármacos , Receptor PAR-2/efeitos da radiação , Pele/efeitos dos fármacos , Pele/inervação , Pele/efeitos da radiação , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA