Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(9): 2843-2866, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38739308

RESUMO

The type of experimental model for the in vitro testing of drug formulations efficiency represents an important tool in cancer biology, with great attention being granted to three-dimensional (3D) cultures as these offer a closer approximation of the clinical sensitivity of drugs. In this study, the effects induced by carboxyl-functionalized single-walled carbon nanotubes complexed with cisplatin (SWCNT-COOH-CDDP) and free components (SWCNT-COOH and CDDP) were compared between conventional 2D- and 3D-spheroid cultures of human breast cancer cells. The 2D and 3D breast cancer cultures were exposed to various doses of SWCNT-COOH (0.25-2 µg/mL), CDDP (0.158-1.26 µg/mL) and the same doses of SWNCT-COOH-CDDP complex for 24 and 48 h. The anti-tumor activity, including modulation of cell viability, oxidative stress, proliferation, apoptosis, and invasion potential, was explored by spectrophotometric and fluorometric methods, immunoblotting, optical and fluorescence microscopy. The SWCNT-COOH-CDDP complex proved to have high anti-cancer efficiency on 2D and 3D cultures by inhibiting cell proliferation and activating cell death. A dose of 0.632 µg/mL complex triggered different pathways of apoptosis in 2D and 3D cultures, by intrinsic, extrinsic, and reticulum endoplasmic pathways. Overall, the 2D cultures showed higher susceptibility to the action of complex compared to 3D cultures and SWCNT-COOH-CDDP proved enhanced anti-tumoral activity compared to free CDDP.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Sobrevivência Celular , Cisplatino , Nanotubos de Carbono , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Cisplatino/farmacologia , Humanos , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Apoptose/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Relação Dose-Resposta a Droga
2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473844

RESUMO

Nicotinamide mononucleotide (NMN) has emerged as a promising therapeutic intervention for age-related disorders, including type 2 diabetes. In this study, we confirmed the previously observed effects of NMN treatment on glucose uptake and investigated its underlying mechanisms in various tissues and cell lines. Through the most comprehensive proteomic analysis to date, we discovered a series of novel organ-specific effects responsible for glucose uptake as measured by the IPGTT: adipose tissue growing (suggested by increased protein synthesis and degradation and mTOR proliferation signaling upregulation). Notably, we observed the upregulation of thermogenic UCP1, promoting enhanced glucose conversion to heat in intermuscular adipose tissue while showing a surprising repressive effect on mitochondrial biogenesis in muscle and the brain. Additionally, liver and muscle cells displayed a unique response, characterized by spliceosome downregulation and concurrent upregulation of chaperones, proteasomes, and ribosomes, leading to mildly impaired and energy-inefficient protein synthesis machinery. Furthermore, our findings revealed remarkable metabolic rewiring in the brain. This involved increased production of ketone bodies, downregulation of mitochondrial OXPHOS and TCA cycle components, as well as the induction of well-known fasting-associated effects. Collectively, our data elucidate the multifaceted nature of NMN action, highlighting its organ-specific effects and their role in improving glucose uptake. These findings deepen our understanding of NMN's therapeutic potential and pave the way for novel strategies in managing metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Mononucleotídeo de Nicotinamida , Humanos , Mononucleotídeo de Nicotinamida/metabolismo , Biogênese de Organelas , Proteômica , Tecido Adiposo/metabolismo , Glucose , NAD/metabolismo
3.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543026

RESUMO

On the verge of a theranostic approach to personalised medicine, copper-64 is one of the emerging radioisotopes in nuclear medicine due to its exploitable nuclear and biochemical characteristics. The increased demand for copper-64 for preclinical and clinical studies has prompted the development of production routes. This research aims to compare the (p,n) reaction on nickel-64 solid versus liquid targets and evaluate the effectiveness of [64Cu]CuCl2 solutions prepared by the two routes. As new treatments for neurotensin receptor-overexpressing tumours have developed, copper-64 was used to radiolabel Neurotensin (8-13) and Neuromedin N. High-quality [64Cu]CuCl2 solutions were prepared using ACSI TR-19 and IBA Cyclone Kiube cyclotrons. The radiochemical purity after post-irradiation processing reached 99% (LT) and 99.99% (ST), respectively. The irradiation of a solid target with 11.8 MeV protons and 150 µAh led to 704 ± 84 MBq/µA (17.6 ± 2.1 GBq/batch at EOB). At the end of the purification process (1 h, 90.90% activity yield), the solution for peptide radiolabelling had a radioactive concentration of 1340.4 ± 70.1 MBq/mL (n.d.c.). The irradiation of a liquid target with 16.9 MeV protons and 230 µAh resulted in 3.7 ± 0.2 GBq/batch at EOB, which corresponds to an experimental production yield of 6.89 GBq.cm3/(g.µA)sat. Benefiting from a shorter purification process (40 min), the activity yielded 90.87%, while the radioactive concentration of the radiolabelling solution was lower (492 MBq/mL, n.d.c.). The [64Cu]CuCl2 solutions were successfully used for the radiolabelling of DOTA-NT(8-13) and DOTA-NN neuropeptides, resulting in a high RCP (>99%) and high molar activity (27.2 and 26.4 GBq/µmol for LT route compared to 45 and 52 GBq/µmol for ST route, respectively). The strong interaction between the [64Cu]Cu-DOTA-NT(8-13) and the colon cancerous cell lines HT29 and HCT116 proved that the specificity for NTR had not been altered, as shown by the uptake and retention data.


Assuntos
Radioisótopos de Cobre , Fragmentos de Peptídeos , Prótons , Cobre , Neurotensina , Radioisótopos , Compostos Radiofarmacêuticos
4.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834718

RESUMO

Iron oxide nanoparticles are one of the most promising tools for theranostic applications of pancreatic cancer due to their unique physicochemical and magnetic properties making them suitable for both diagnosis and therapy. Thus, our study aimed to characterize the properties of dextran-coated iron oxide nanoparticles (DIO-NPs) of maghemite (γ-Fe2O3) type synthesized by co-precipitation and to investigate their effects (low-dose versus high-dose) on pancreatic cancer cells focusing on NP cellular uptake, MR contrast, and toxicological profile. This paper also addressed the modulation of heat shock proteins (HSPs) and p53 protein expression as well as the potential of DIO-NPs for theranostic purposes. DIO-NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering analyses (DLS), and zeta potential. Pancreatic cancer cells (PANC-1 cell line) were exposed to different doses of dextran-coated É£-Fe2O3 NPs (14, 28, 42, 56 µg/mL) for up to 72 h. The results revealed that DIO-NPs with a hydrodynamic diameter of 16.3 nm produce a significant negative contrast using a 7 T MRI scanner correlated with dose-dependent cellular iron uptake and toxicity levels. We showed that DIO-NPs are biocompatible up to a concentration of 28 µg/mL (low-dose), while exposure to a concentration of 56 µg/mL (high-dose) caused a reduction in PANC-1 cell viability to 50% after 72 h by inducing reactive oxygen species (ROS) production, reduced glutathione (GSH) depletion, lipid peroxidation, enhancement of caspase-1 activity, and LDH release. An alteration in Hsp70 and Hsp90 protein expression was also observed. At low doses, these findings provide evidence that DIO-NPs could act as safe platforms in drug delivery, as well as antitumoral and imaging agents for theranostic uses in pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Dextranos , Medicina de Precisão , Linhagem Celular , Nanopartículas Magnéticas de Óxido de Ferro , Hormônios Pancreáticos , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Neoplasias Pancreáticas
5.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047374

RESUMO

The current study was focused on the potential of pure P25 TiO2 nanoparticles (NPs) and Fe(1%)-N co-doped P25 TiO2 NPs to induce cyto- and genotoxic effects in MRC-5 human pulmonary fibroblasts. The oxidative lesions of P25 NPs were reflected in the amount of 8-hydroxydeoxyguanosine accumulated in DNA and the lysosomal damage produced, but iron-doping partially suppressed these effects. However, neither P25 nor Fe(1%)-N co-doped P25 NPs had such a serious effect of inducing DNA fragmentation or activating apoptosis signaling. Moreover, oxo-guanine glycosylase 1/2, a key enzyme of the base excision repair mechanism, was overexpressed in response to the oxidative DNA deterioration induced by P25 and P25-Fe(1%)-N NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Nanopartículas Metálicas/toxicidade , Dano ao DNA , Titânio/toxicidade , Pulmão , Fibroblastos , DNA/farmacologia
6.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328678

RESUMO

The aim of this study was to investigate the biocompatibility of contrast agents, such as gadolinium 1, 4, 7, 10 tetraazacyclo-dodecane tetraacetic acid (GdDOTA) and gadolinium dioctyl terephthalate (GdDOTP), encapsulated in a polymeric matrix containing chitosan and hyaluronic acid using RAW264.7 murine macrophages and human blood samples. The cell viability and cytotoxicity were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, while cell cycle analysis was determined in RAW264.7 cells using flow cytometry. The mitochondrial membrane potential (MMP), hemolytic index, complement activation, and thrombogenic potential of gadolinium (Gd) containing nanohydrogels were measured by fluorometric and spectrophotometric methods. Taken together, our results demonstrate the good bio- and hemocompatibility of chitosan-based nanohydrogels with the RAW264.7 cell line and human blood cells, suggesting that these could be used as injectable formulations for the magnetic resonance imaging diagnostic of lymph nodes.


Assuntos
Quitosana , Meios de Contraste , Animais , Gadolínio , Humanos , Ácido Hialurônico , Imageamento por Ressonância Magnética/métodos , Camundongos
7.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235008

RESUMO

Nanotechnology is constantly expanding, with nanomaterials being more and more used in common commercial products that define our modern life. Among all types of nanomaterials, nanoparticles (NPs) occupy an important place, considering the great amount that is produced nowadays and the diversity of their applications. Conventional techniques applied to synthesize NPs have some issues that impede them from being appreciated as safe for the environment and health. The alternative to these might be the use of living organisms or biological extracts that can be involved in the green approach synthesis of NPs, a process that is free of harmful chemicals, cost-effective and a low energy consumer. Several factors, including biological reducing agent concentration, initial precursor salt concentration, agitation, reaction time, pH, temperature and light, can influence the characteristics of biologically synthesized NPs. The interdependence between these reaction parameters was not explored, being the main impediment in the implementation of the biological method on an industrial scale. Our aim is to present a brief review that focuses on the current knowledge regarding how the aforementioned factors can control the size and shape of green-synthesized NPs. We also provide an overview of the biomolecules that were found to be suitable for NP synthesis. This work is meant to be a support for researchers who intend to develop new green approaches for the synthesis of NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Química Verde/métodos , Nanopartículas Metálicas/química , Nanotecnologia , Extratos Vegetais/química , Substâncias Redutoras
8.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066780

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second most common cause of cancer-related death globally. This type of liver cancer is frequently detected at a late stage by current biomarkers because of the high clinical and biological heterogeneity of HCC tumours. From a plethora of molecules and cellular compounds, small nanoparticles with an endosomal origin are valuable cancer biomarkers or cargos for novel treatments. Despite their small sizes, in the range of 40-150 nm, these particles are delimited by a lipid bilayer membrane with a specific lipid composition and carry functional information-RNA, proteins, miRNAs, long non-coding RNAs (lncRNAs), or DNA fragments. This review summarizes the role of exosomal microRNA (miRNA) species as biomarkers in HCC therapy. After we briefly introduce the exosome biogenesis and the methods of isolation and characterization, we discuss miRNA's correlation with the diagnosis and prognosis of HCC, either as single miRNA species, or as specific panels with greater clinical impact. We also review the role of exosomal miRNAs in the tumourigenic process and in the cell communication pathways through the delivery of cargos, including proteins or specific drugs.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Exossomos/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/genética , Terapia de Alvo Molecular , Animais , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Humanos , MicroRNAs/metabolismo
9.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502536

RESUMO

The advancement of nanotechnology in the last decade has developed an abundance of novel and intriguing TiO2-based nanomaterials that are widely used in many sectors, including industry (as a food additive and colorant in cosmetics, paints, plastics, and toothpaste) and biomedicine (photoelectrochemical biosensing, implant coatings, drug delivery, and new emerging antimicrobial agents). Therefore, the increased use of engineered nanomaterials in the industry has raised serious concern about human exposure and their unexpected cytotoxic effects. Since inhalation is considered the most relevant way of absorbing nanomaterials, different cell death mechanisms induced in MRC-5 lung fibroblasts, following the exposure to functionalized TiO2 NPs, were investigated. Long-term exposure to TiO2 nanoparticles co-doped with 1% of iron and nitrogen led to the alteration of p53 protein activity and the gene expression controlled by this suppressor (NF-kB and mdm2), DNA damage, cell cycle disruptions at the G2/M and S phases, and lysosomal membrane permeabilization and the subsequent release of cathepsin B, triggering the intrinsic pathway of apoptosis in a Bax- and p53-independent manner. Our results are of major significance, contributing to the understanding of the mechanisms underlying the interaction of these nanoparticles with in vitro biological systems, and also providing useful information for the development of new photocatalytic nanoparticles that are active in the visible spectrum, but with increased biocompatibility.


Assuntos
Monóxido de Carbono/química , Fibroblastos/efeitos dos fármacos , Ferro/química , Nanopartículas Metálicas/administração & dosagem , Nitrogênio/química , Titânio/química , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Difração de Raios X
10.
Bull Environ Contam Toxicol ; 102(1): 39-45, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30443658

RESUMO

Although water pollution by metals in the Danube River is considered high, little is known about its impact on sturgeons. In this regard, the aim of this study was to investigate the bioaccumulation of copper and zinc as well as their effects on antioxidant enzymes activities in the liver of Acipenser stellatus. The fish were exposed for 7 and 14 days, to two concentrations of copper and zinc (10% and 25% of LC50 96 h), previously determined as 0.54 mg/L Cu2+ and, 34.22 mg/L Zn2+ respectively. The enzymatic responses of A. stellatus varied greatly depending on metal type, concentration and time. Significant bioaccumulation of the two metals was recorded. Even though the water hardness used in the experiment is known to offer a clear protection against metal contamination, stellate sturgeon remains a sensitive species in the face of metal toxicity.


Assuntos
Cobre/toxicidade , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Cobre/farmacocinética , Peixes , Dose Letal Mediana , Fígado/enzimologia , Poluentes Químicos da Água/farmacocinética , Zinco/farmacocinética
11.
Biomacromolecules ; 18(9): 2756-2766, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28777565

RESUMO

To synthesize chitosan nanoparticles (CS NPs), ionic gelation is a very attractive method. It relies on the spontaneous supramolecular assembly of cationic CS with anionic compounds, which leads to nanohydrogels. To extend ionic gelation to functionalized CS, the assessment of CS degree of substitution (DSCS) is a key step. In this paper, we have developed a hyphenated strategy for functionalized CS characterization, based upon 1H, DOSY and, when relevant, 1D diffusion-filtered 19F NMR spectroscopies. For that, we have synthesized two series of water-soluble CS via amidation of CS amino groups with mPEG2000-COOH or fluorinated synthons (TFB-COOH). The aforementioned NMR techniques helped to discriminate between ungrafted and grafted synthons and finally to determine DSCS. According to DSCS values, the selection of CS-mPEG2000 or CS-TFB copolymers can be made to obtain, in the presence of hyaluronic acid (HA) and tripolyphosphate (TPP), CS-mPEG2000-TPP/HA or CS-TFB-TPP/HA nanohydrogels suitable for drug delivery.


Assuntos
Quitosana/análise , Hidrogéis/síntese química , Nanopartículas/química , Animais , Linhagem Celular , Compostos de Flúor/química , Ácido Hialurônico/química , Hidrogéis/efeitos adversos , Hidrogéis/química , Macrófagos/efeitos dos fármacos , Camundongos , Nanopartículas/efeitos adversos , Polietilenoglicóis/química
12.
J Enzyme Inhib Med Chem ; 32(1): 1079-1090, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28783982

RESUMO

Carbonic anhydrase IX (CA IX) is an important orchestrator of hypoxic tumour environment, associated with tumour progression, high incidence of metastasis and poor response to therapy. Due to its tumour specificity and involvement in associated pathological processes: tumourigenesis, angiogenesis, inhibiting CA IX enzymatic activity has become a valid therapeutic option. Dynamic cell-based biosensing platforms can complement cell-free and end-point analyses and supports the process of design and selection of potent and selective inhibitors. In this context, we assess the effectiveness of recently emerged CA IX inhibitors (sulphonamides and sulphocoumarins) and their antitumour potential using an electrical impedance spectroscopy biosensing platform. The analysis allows discriminating between the inhibitory capacities of the compounds and their inhibition mechanisms. Microscopy and biochemical assays complemented the analysis and validated impedance findings establishing a powerful biosensing tool for the evaluation of carbonic anhydrase inhibitors potency, effective for the screening and design of anticancer pharmacological agents.


Assuntos
Antineoplásicos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Cumarínicos/farmacologia , Impedância Elétrica , Sulfonamidas/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Células Tumorais Cultivadas
13.
Aging Clin Exp Res ; 29(4): 621-629, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27688246

RESUMO

OBJECTIVE: The aim of this study was to evaluate the relationships between the serum levels of adiponectin and systemic oxidative stress exerted on lipids, proteins, as well as endothelial function and cardiovascular diseases (CVD) risk markers, in elderly subjects with metabolic syndrome (MS). METHODS: The serum advanced glycation and oxidation protein products, low-density lipoprotein susceptibility to oxidation (oxLDL), nitric oxide metabolic pathway products (NOx), serum lipid peroxidation, as well as total antioxidant/oxidative capacity (TAC/TOC), were analyzed in elderly subjects with MS (n = 44), compared to aged-matched control (n = 39). RESULTS: We pointed out significantly lower levels of adiponectin in elderly MS subjects concomitantly with significantly higher levels of oxidative stress and CVD risk markers. Significant positive correlations were found between serum adiponectin levels and HDL-cholesterol (p < 0.05) and the total cholesterol/LDL-cholesterol ratio (p < 0.01). Additionally, adiponectin levels were significantly inversely associated with insulin resistance index (HOMA-IR, r = -0.348; p < 0.05) and serum lipid peroxidation (r = -0.337; p < 0.05), and significantly positively with the antioxidant capacity (TAC, r = 0.339; p < 0.05). Conversely, adiponectin levels were significantly negatively (r = -0.310; p < 0.05) associated with serum uric acid concentration. CONCLUSIONS: The major protective role of adiponectin versus stress related to an impaired glucose and lipid metabolism suggests that adiponectin plays a critical role in adiposity-related metabolic stress and redox homeostasis.


Assuntos
Adiponectina/sangue , Envelhecimento/metabolismo , Síndrome Metabólica/sangue , Estresse Oxidativo , Adiponectina/metabolismo , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , HDL-Colesterol/sangue , Feminino , Humanos , Resistência à Insulina , Lipoproteínas LDL/sangue , Masculino , Síndrome Metabólica/etiologia , Oxirredução , Fatores de Risco , Ácido Úrico/sangue
14.
Arch Environ Contam Toxicol ; 73(4): 607-618, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28939958

RESUMO

Gills are major targets for acute metal toxicity in fish, due to their permanent contact with aquatic pollutants. To assess the effects of metals on gills of the Leuciscus cephalus (chub), fish individuals were collected from two sites in the Tur River, Romania, in upstream (site 1) and downstream (site 2) of a metal pollution source. Quantitative and hyperspectral analyses showed that Zn, Sr, and Fe concentrations were significantly higher in gills from site 2 compared with site 1. Malondialdehyde and advanced oxidation protein products levels increased 17 and 28%, respectively, whereas reduced glutathione level diminished significantly in the gills of fish collected from site 2 compared to site 1. The activities of superoxide dismutase, catalase, and glutathione-S-transferase increased significantly at 41, 21, and 28%, respectively. Proliferating cell nuclear antigen (PCNA) protein levels, as well as the amount of DNA damage, were significantly increased for site 2 compared with site 1. The induced oxidative stress generated hyperplasia, hypertrophy, and inflammation in the epithelial cells and apoptosis. Hence, this could suggest that gill cells have tried to counteract the oxidative stress-induced DNA fragmentation by PCNA up-regulation, but the PCNA expression decreased on longer time due to the low level of GSH, resulting in apoptosis.


Assuntos
Cyprinidae/fisiologia , Brânquias/efeitos dos fármacos , Metais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Brânquias/patologia , Brânquias/fisiologia , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Malondialdeído/metabolismo , Metais/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo
15.
Int J Mol Sci ; 18(2)2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28125053

RESUMO

TiO2-based photocatalysts were obtained during previous years in order to limit pollution and to ease human daily living conditions due to their special properties. However, obtaining biocompatible photocatalysts is still a key problem, and the mechanism of their toxicity recently received increased attention. Two types of TiO2 nanoparticles co-doped with 1% of iron and nitrogen (TiO2-1% Fe-N) atoms were synthesized in hydrothermal conditions at pH of 8.5 (HT1) and 5.5 (HT2), and their antimicrobial activity and cytotoxic effects exerted on human pulmonary and dermal fibroblasts were assessed. These particles exhibited significant microbicidal and anti-biofilm activity, suggesting their potential application for microbial decontamination of different environments. In addition, our results demonstrated the biocompatibility of TiO2-1% Fe-N nanoparticles at low doses on lung and dermal cells, which may initiate oxidative stress through dose accumulation. Although no significant changes were observed between the two tested photocatalysts, the biological response was cell type specific and time- and dose-dependent; the lung cells proved to be more sensitive to nanoparticle exposure. Taken together, these experimental data provide useful information for future photocatalytic applications in the industrial, food, pharmaceutical, and medical fields.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/microbiologia , Nanopartículas/química , Processos Fotoquímicos , Titânio/química , Citoesqueleto de Actina , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias , Catálise , Sobrevivência Celular/efeitos dos fármacos , Coloides , Humanos , Hidrodinâmica , Peroxidação de Lipídeos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Difração de Raios X
16.
Ecotoxicol Environ Saf ; 119: 198-205, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26005919

RESUMO

Pollution of the aquatic environment by heavy metals is a great concern worldwide. Freshwater fish ingests various metals through gills, skin or diet. Our aim was to investigate the oxidative stress and histopathological injuries induced by Fe, Cu, Zn, Pb, Cd in the liver and kidney of Leuciscus cephalus. Fish samples were collected from two sites in the Tur River, NW Romania, in upstream and downstream of a pollution source. Metals were differently distributed in the liver and kidney of fish. The highest concentrations of Fe, Cu and Pb were found in liver, whereas Zn and Cd concentrations were the highest in kidney in specimens collected from the downstream site. The histopathological changes were associated with metal bioaccumulation, being more severe in kidney than liver. Malondialdehyde (MDA) and advanced oxidation protein products (AOPP) increased significantly in the liver and kidney of fish from downstream site compared to upstream one, whereas reduced glutathione (GSH) decreased. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) increased significantly in livers, whereas SOD increased in kidney. Our study revealed that liver has a higher capacity and adaptability to counteract ROS compared to kidney. The more pronounced increase of hepatic SOD, CAT and GST activities is related milder structural changes observed in liver compared to kidney, where lesions were not reduced by antioxidant defense system.


Assuntos
Cyprinidae/fisiologia , Poluição Ambiental/efeitos adversos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Rios , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalase/metabolismo , Cyprinidae/metabolismo , Água Doce , Sedimentos Geológicos/química , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Malondialdeído/metabolismo , Metais Pesados/análise , Rios/química , Romênia , Superóxido Dismutase/metabolismo
17.
Int J Mol Sci ; 16(9): 20100-17, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26307981

RESUMO

Advanced glycation end products (AGEs) can activate the inflammatory pathways involved in diabetic nephropathy. Understanding these molecular pathways could contribute to therapeutic strategies for diabetes complications. We evaluated the modulation of inflammatory and oxidative markers, as well as the protective mechanisms employed by human embryonic kidney cells (HEK 293) upon exposure to 200 µg/mL bovine serum albumine (BSA) or AGEs-BSA for 12, 24 and 48 h. The mRNA and protein expression levels of AGEs receptor (RAGE) and heat shock proteins (HSPs) 27, 60 and 70, the activity of antioxidant enzymes and the expression levels of eight cytokines were analysed. Cell damage via oxidative mechanisms was evaluated by glutathione and malondialdehyde levels. The data revealed two different time scale responses. First, the up-regulation of interleukin-6 (IL-6), HSP 27 and high catalase activity were detected as early as 12 h after exposure to AGEs-BSA, while the second response, after 24 h, consisted of NF-κB p65, RAGE, HSP 70 and inflammatory cytokine up-regulation, glutathione depletion, malondialdehyde increase and the activation of antioxidant enzymes. IL-6 might be important in the early ignition of inflammatory responses, while the cellular redox imbalance, RAGE activation and NF-κB p65 increased expression further enhance inflammatory signals in HEK 293 cells.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Interleucina-6/biossíntese , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Antioxidantes/metabolismo , Sobrevivência Celular , Células Cultivadas , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Produtos Finais de Glicação Avançada/farmacologia , Glicosilação , Células HEK293 , Proteínas de Choque Térmico/metabolismo , Humanos , Inflamação/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Receptor para Produtos Finais de Glicação Avançada/genética , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/farmacologia , Superóxido Dismutase , Regulação para Cima
18.
Int J Mol Sci ; 16(12): 29417-35, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26690409

RESUMO

The biochemical and histopathological changes induced by the exposure to iron oxide nanoparticles coated with phospholipid-based polymeric micelles (IONPs-PM) in CD-1 mice lungs were analyzed. After 2, 3, 7 and 14 days following the intravenous injection of IONPs-PM (5 and 15 mg Fe/kg bw), lactate dehydrogenase (LDH) activity, oxidative stress parameters and the expression of Bax, Bcl-2, caspase-3 and TNF-α were evaluated in lung tissue. An increase of catalase (CAT) and glutathione reductase (GR) activities on the second day followed by a decrease on the seventh day, as well as a decline of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity on the third and seventh day were observed in treated groups vs. controls. However, all these enzymatic activities almost fully recovered on the 14th day. The reduced glutathione (GSH) and protein thiols levels decreased significantly in nanoparticles-treated groups and remained diminished during the entire experimental period; by contrast malondialdehyde (MDA) and protein carbonyls increased between the 3rd and 14th day of treatment vs. control. Relevant histopathological modifications were highlighted using Hematoxylin and Eosin (H&E) staining. In addition, major changes in the expression of apoptosis markers were observed in the first week, more pronounced for the higher dose. The injected IONPs-PM generated a dose-dependent decrease of the mouse lung capacity, which counteracted oxidative stress, thus creating circumstances for morphopathological lesions and oxidation processes.


Assuntos
Pulmão/patologia , Nanopartículas de Magnetita/toxicidade , Estresse Oxidativo , Fosfatidiletanolaminas/toxicidade , Polietilenoglicóis/toxicidade , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Glutationa/metabolismo , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos , Pulmão/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Camundongos , Micelas , Tamanho da Partícula , Carbonilação Proteica
19.
Int J Mol Sci ; 16(12): 29398-416, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26690408

RESUMO

This study evaluated the in vitro effects of 62.5 µg/mL silica nanoparticles (SiO NPs) on MRC-5 human lung fibroblast cells for 24, 48 and 72 h. The nanoparticles' morphology, composition, and structure were investigated using high resolution transmission electron microscopy, selected area electron diffraction and X-ray diffraction. Our study showed a decreased cell viability and the induction of cellular oxidative stress as evidenced by an increased level of reactive oxygen species (ROS), carbonyl groups, and advanced oxidation protein products after 24, 48, and 72 h, as well as a decreased concentration of glutathione (GSH) and protein sulfhydryl groups. The protein expression of Hsp27, Hsp60, and Hsp90 decreased at all time intervals, while the level of protein Hsp70 remained unchanged during the exposure. Similarly, the expression of p53, MDM2 and Bcl-2 was significantly decreased for all time intervals, while the expression of Bax, a marker for apoptosis, was insignificantly downregulated. These results correlated with the increase of pro-caspase 3 expression. The role of autophagy in cellular response to SiO2NPs was demonstrated by a fluorescence-labeled method and by an increased level of LC3-II/LC3-I ratio. Taken together, our data suggested that SiO2 NPs induced ROS-mediated autophagy in MRC-5 cells as a possible mechanism of cell survival.


Assuntos
Nanopartículas/toxicidade , Estresse Oxidativo , Dióxido de Silício/toxicidade , Apoptose , Autofagia , Linhagem Celular , Sobrevivência Celular , Glutationa/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo
20.
Materials (Basel) ; 17(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255442

RESUMO

Nanoparticles (NPs) are conventionally produced by using physical and chemical methods that are no longer in alignment with current society's demand for a low environmental impact. Accordingly, green synthesis approaches are considered a potential alternative due to the plant extracts that substitute some of the hazardous reagents. The general mechanism is based on the reducing power of natural products that allows the formation of NPs from a precursor solution. In this context, our study proposes a simple, innovative, and reproducible green approach for the synthesis of titanium dioxide (TiO2 NPs) that uses, for the first time, the major component of green tea (Camellia sinensis)-epigallocatechin-3-gallate (EGCG), a non-toxic, dietary, accessible, and bioactive molecule. The influence of EGCG on the formation of TiO2 NPs was analyzed by comparing the physicochemical characteristics of green synthesized NPs with the chemically obtained ones. The synthesis of bare TiO2 NPs was performed by hydrolysis of titanium isopropoxide in distilled water, and green TiO2 NPs were obtained in the same conditions, but in the presence of a 1 mM EGCG aqueous solution. The formation of TiO2 NPs was confirmed by UV-VIS and FTIR spectroscopy. SEM micrographs showed spherical particles with relatively low diameters. Our findings also revealed that green synthesized NPs were more stable in colloids than the chemically synthesized ones. However, the phytocompound negatively influenced the formation of a crystalline structure in the green synthesized TiO2 NPs. Furthermore, the synthesis of EGCG-TiO2 NPs could become a versatile choice for applications extending beyond photocatalysis, including promising prospects in the biomedical field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA