Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(7): e202302933, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970753

RESUMO

Telluronium salts [Ar2 MeTe]X were synthesized, and their Lewis acidic properties towards a number of Lewis bases were addressed in solution by physical and theoretical means. Structural X-ray diffraction analysis of 21 different salts revealed the electrophilicity of the Te centers in their interactions with anions. Telluroniums' propensity to form Lewis pairs was investigated with OPPh3 . Diffusion-ordered NMR spectroscopy suggested that telluroniums can bind up to three OPPh3 molecules. Isotherm titration calorimetry showed that the related heats of association in 1,2-dichloroethane depend on the electronic properties of the substituents of the aryl moiety and on the nature of the counterion. The enthalpies of first association of OPPh3 span -0.5 to -5 kcal mol-1 . Study of the affinity of telluroniums for OPPh3 by state-of-the-art DFT and ab-initio methods revealed the dominant Coulombic and dispersion interactions as well as an entropic effect favoring association in solution. Intermolecular orbital interactions between [Ar2 MeTe]+ cations and OPPh3 are deemed insufficient on their own to ensure the cohesion of [Ar2 MeTe ⋅ Bn ]+ complexes in solution (B=Lewis base). Comparison of Grimme's and Tkatchenko's DFT-D4/MBD-vdW thermodynamics of formation of higher [Ar2 MeTe ⋅ Bn ]+ complexes revealed significant molecular size-dependent divergence of the two methodologies, with MBD yielding better agreement with experiment.

2.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38445736

RESUMO

The quantum Drude oscillator (QDO) model has been widely used as an efficient surrogate to describe the electric response properties of matter as well as long-range interactions in molecules and materials. Most commonly, QDOs are coupled within the dipole approximation so that the Hamiltonian can be exactly diagonalized, which forms the basis for the many-body dispersion method [Phys. Rev. Lett. 108, 236402 (2012)]. The dipole coupling is efficient and allows us to study non-covalent many-body effects in systems with thousands of atoms. However, there are two limitations: (i) the need to regularize the interaction at short distances with empirical damping functions and (ii) the lack of multipolar effects in the coupling potential. In this work, we convincingly address both limitations of the dipole-coupled QDO model by presenting a numerically exact solution of the Coulomb-coupled QDO model by means of quantum Monte Carlo methods. We calculate the potential-energy surfaces of homogeneous QDO dimers, analyzing their properties as a function of the three tunable parameters: frequency, reduced mass, and charge. We study the coupled-QDO model behavior at short distances and show how to parameterize this model to enable an effective description of chemical bonds, such as the covalent bond in the H2 molecule.

3.
Phys Rev Lett ; 131(22): 228001, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101380

RESUMO

We develop a quantum embedding method that enables accurate and efficient treatment of interactions between molecules and an environment, while explicitly including many-body correlations. The molecule is composed of classical nuclei and quantum electrons, whereas the environment is modeled via charged quantum harmonic oscillators. We construct a general Hamiltonian and introduce a variational Ansatz for the correlated ground state of the fully interacting molecule-environment system. This wave function is optimized via the variational Monte Carlo method and the ground state energy is subsequently estimated through the diffusion Monte Carlo method. The proposed scheme allows an explicit many-body treatment of electrostatic, polarization, and dispersion interactions between the molecule and the environment. We study solvation energies and excitation energies of benzene derivatives, obtaining excellent agreement with explicit ab initio calculations and experiments.

4.
Phys Rev Lett ; 123(15): 156402, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702309

RESUMO

Fixed-node diffusion Monte Carlo (FNDMC) method is a stochastic quantum many-body approach that has a great potential in electronic structure theory. We examine how FNDMC total energy E(N) satisfies exact constraints, linearity and derivative discontinuity, versus fractional electron number N, if combined with mean-field trial wave functions that miss such features. H and Cl atoms with fractional charge reveal that FNDMC method is well able to restore the piecewise linearity of E(N). The method uses ensemble and projector ingredients to achieve the correct charge localization. A water-solvated Cl^{-} complex illustrates superior performance of FNDMC method for charged noncovalent systems.

5.
J Chem Theory Comput ; 15(6): 3552-3557, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31026158

RESUMO

Single-determinant (SD) fixed-node diffusion Monte Carlo (FNDMC) gains popularity as a benchmark method scalable to large noncovalent systems, although its accuracy limits are not yet fully mapped out. We report on an interesting example of significant SD FNDMC accuracy variations in middle-sized hydrogen-bonded dimer complexes, formic acid (FA) vs methanediol (MD), distinct by the maximum bond order (2 vs 1). While the traditional SD FNDMC schemes based on bias cancellation are capable of achieving benchmark (2%) accuracy for MD, this has not been the case for FA. We identify the leading systematic error source in energy differences and show that suitably designed Jastrow factors enable SD FNDMC to reach the reference accuracy for FA. This work clearly illustrates the varying accuracy of the present-day SD FNDMC at the 0.1 kcal/mol scale for a particular set of systems but also points out promising routes toward alleviation of these shortcomings, still within the single-reference framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA