Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243377

RESUMO

For sessile organisms at high risk from climate change, phenotypic plasticity can be critical to rapid acclimation. Epigenetic markers like DNA methylation are hypothesized as mediators of plasticity; methylation is associated with the regulation of gene expression, can change in response to ecological cues, and is a proposed basis for the inheritance of acquired traits. Within reef-building corals, gene-body methylation (gbM) can change in response to ecological stressors. If coral DNA methylation is transmissible across generations, this could potentially facilitate rapid acclimation to environmental change. We investigated methylation heritability in Acropora, a stony reef-building coral. Two Acropora millepora and two Acropora selago adults were crossed, producing eight offspring crosses (four hybrid, two of each species). We used whole-genome bisulfite sequencing to identify methylated loci and allele-specific alignments to quantify per-locus inheritance. If methylation is heritable, differential methylation (DM) between the parents should equal DM between paired offspring alleles at a given locus. We found a mixture of heritable and nonheritable loci, with heritable portions ranging from 44% to 90% among crosses. gBM was more heritable than intergenic methylation, and most loci had a consistent degree of heritability between crosses (i.e. the deviation between parental and offspring DM were of similar magnitude and direction). Our results provide evidence that coral methylation can be inherited but that heritability is heterogenous throughout the genome. Future investigations into this heterogeneity and its phenotypic implications will be important to understanding the potential capability of intergenerational environmental acclimation in reef building corals.


Assuntos
Antozoários , Recifes de Corais , Animais , Metilação de DNA , Antozoários/genética , Aclimatação/genética , Adaptação Fisiológica
2.
Mol Ecol ; 33(8): e17318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488669

RESUMO

Increasing ocean temperatures are causing dysbiosis between coral hosts and their symbionts. Previous work suggests that coral host gene expression responds more strongly to environmental stress compared to their intracellular symbionts; however, the causes and consequences of this phenomenon remain untested. We hypothesized that symbionts are less responsive because hosts modulate symbiont environments to buffer stress. To test this hypothesis, we leveraged the facultative symbiosis between the scleractinian coral Oculina arbuscula and its symbiont Breviolum psygmophilum to characterize gene expression responses of both symbiotic partners in and ex hospite under thermal challenges. To characterize host and in hospite symbiont responses, symbiotic and aposymbiotic O. arbuscula were exposed to three treatments: (1) control (18°C), (2) heat (32°C), and (3) cold (6°C). This experiment was replicated with B. psygmophilum cultured from O. arbuscula to characterize ex hospite symbiont responses. Both thermal challenges elicited classic environmental stress responses (ESRs) in O. arbuscula regardless of symbiotic state, with hosts responding more strongly to cold challenge. Hosts also exhibited stronger responses than in hospite symbionts. In and ex hospite B. psygmophilum both down-regulated gene ontology pathways associated with photosynthesis under thermal challenge; however, ex hospite symbionts exhibited greater gene expression plasticity and differential expression of genes associated with ESRs. Taken together, these findings suggest that O. arbuscula hosts may buffer environments of B. psygmophilum symbionts; however, we outline the future work needed to confirm this hypothesis.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Simbiose/genética , Estresse Fisiológico/genética , Temperatura Alta , Expressão Gênica , Recifes de Corais , Dinoflagellida/genética
3.
BMC Genomics ; 23(1): 234, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337260

RESUMO

BACKGROUND: As human activity alters the planet, there is a pressing need to understand how organisms adapt to environmental change. Of growing interest in this area is the role of epigenetic modifications, such as DNA methylation, in tailoring gene expression to fit novel conditions. Here, we reanalyzed nine invertebrate (Anthozoa and Hexapoda) datasets to validate a key prediction of this hypothesis: changes in DNA methylation in response to some condition correlate with changes in gene expression. RESULTS: In accord with previous observations, baseline levels of gene body methylation (GBM) positively correlated with transcription, and negatively correlated with transcriptional variation between conditions. Correlations between changes in GBM and transcription, however, were negligible. There was also no consistent negative correlation between methylation and transcription at the level of gene body methylation class (either highly- or lowly-methylated), anticipated under the previously described "seesaw hypothesis". CONCLUSION: Our results do not support the direct involvement of GBM in regulating dynamic transcriptional responses in invertebrates. If changes in DNA methylation regulate invertebrate transcription, the mechanism must involve additional factors or regulatory influences.


Assuntos
Antozoários , Artrópodes , Animais , Antozoários/genética , Artrópodes/genética , Metilação de DNA , Epigênese Genética , Expressão Gênica , Humanos
4.
J Virol ; 95(23): e0131321, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549975

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has led to growing concerns over increased transmissibility and the ability of some variants to partially escape immunity. Sera from participants immunized on a prime-boost schedule with the mRNA-1273 COVID-19 vaccine were tested for neutralizing activity against several SARS-CoV-2 variants, including variants of concern (VOCs) and variants of interest (VOIs), compared to neutralization of the wild-type SARS-CoV-2 virus (designated D614G). Results showed minimal, statistically nonsignificant effects on neutralization titers against the B.1.1.7 (Alpha) variant (1.2-fold reduction compared with D614G); other VOCs, such as B.1.351 (Beta, including B.1.351-v1, B.1.351-v2, and B.1.351-v3), P.1 (Gamma), and B.1.617.2 (Delta), showed significantly decreased neutralization titers ranging from 2.1-fold to 8.4-fold reductions compared with D614G, although all remained susceptible to mRNA-1273-elicited serum neutralization. IMPORTANCE In light of multiple variants of SARS-CoV-2 that have been documented globally during the COVID-19 pandemic, it remains important to continually assess the ability of currently available vaccines to confer protection against newly emerging variants. Data presented herein indicate that immunization with the mRNA-1273 COVID-19 vaccine produces neutralizing antibodies against key emerging variants tested, including variants of concern and variants of interest. While the serum neutralization elicited by mRNA-1273 against most variants tested was reduced compared with that against the wild-type virus, the level of neutralization is still expected to be protective. Such data are crucial to inform ongoing and future vaccination strategies to combat COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Antivirais/imunologia , Feminino , Humanos , Masculino , Mutação , Testes de Neutralização , Vacinação
5.
BMC Biol ; 19(1): 134, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210294

RESUMO

BACKGROUND: Gene-environment interactions are likely to underlie most human birth defects. The most common known environmental contributor to birth defects is prenatal alcohol exposure. Fetal alcohol spectrum disorders (FASD) describe the full range of defects that result from prenatal alcohol exposure. Gene-ethanol interactions underlie susceptibility to FASD, but we lack a mechanistic understanding of these interactions. Here, we leverage the genetic tractability of zebrafish to address this problem. RESULTS: We first show that vangl2, a member of the Wnt/planar cell polarity (Wnt/PCP) pathway that mediates convergent extension movements, strongly interacts with ethanol during late blastula and early gastrula stages. Embryos mutant or heterozygous for vangl2 are sensitized to ethanol-induced midfacial hypoplasia. We performed single-embryo RNA-seq during early embryonic stages to assess individual variation in the transcriptional response to ethanol and determine the mechanism of the vangl2-ethanol interaction. To identify the pathway(s) that are disrupted by ethanol, we used these global changes in gene expression to identify small molecules that mimic the effects of ethanol via the Library of Integrated Network-based Cellular Signatures (LINCS L1000) dataset. Surprisingly, this dataset predicted that the Sonic Hedgehog (Shh) pathway inhibitor, cyclopamine, would mimic the effects of ethanol, despite ethanol not altering the expression levels of direct targets of Shh signaling. Indeed, we found that ethanol and cyclopamine strongly, but indirectly, interact to disrupt midfacial development. Ethanol also interacts with another Wnt/PCP pathway member, gpc4, and a chemical inhibitor of the Wnt/PCP pathway, blebbistatin, phenocopies the effect of ethanol. By characterizing membrane protrusions, we demonstrate that ethanol synergistically interacts with the loss of vangl2 to disrupt cell polarity required for convergent extension movements. CONCLUSIONS: Our results show that the midfacial defects in ethanol-exposed vangl2 mutants are likely due to an indirect interaction between ethanol and the Shh pathway. Vangl2 functions as part of a signaling pathway that regulates coordinated cell movements during midfacial development. Ethanol exposure alters the position of a critical source of Shh signaling that separates the developing eye field into bilateral eyes, allowing the expansion of the midface. Collectively, our results shed light on the mechanism by which the most common teratogen can disrupt development.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Peixe-Zebra , Animais , Polaridade Celular , Etanol/toxicidade , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Proteínas Hedgehog/genética , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Via de Sinalização Wnt , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Mol Ecol ; 30(24): 6585-6595, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551161

RESUMO

As sea surface temperatures increase, many coral species that used to harbour symbionts of the genus Cladocopium have become colonized with the thermally tolerant genus, Durusdinium. Here, we asked how gene expression in the symbionts of one genus changes depending on the abundance of another symbiont genus within the same coral host, and what effect this interaction has on the host. Symbiont gene expression was overwhelmingly driven by whether the genus was the minority or the majority within the host, which affected 79% (Durusdinium) and 96% (Cladocopium) of all genes. Particularly strong effects in both genera were observed for photosynthesis components (upregulated in the minority state) and proteins putatively associated with cell motility (upregulated in the majority state). Importantly, there was no distinct gene expression signature associated with the mixed symbiosis state when both genera were represented in comparable proportions within the host, which could lead to more intense competition. The mixed symbiosis was also not associated with elevated host stress: in fact, after heat treatment, stress signatures were the lowest in mixed-symbiosis corals compared to both Cladocopium- and Durusdinium-dominated corals. In conclusion, during shuffling between Cladocopium and Durusdinium both symbiont genera go through extensive and largely reciprocal physiological transitions, but there is no evidence of intensifying antagonistic interactions that are detrimental to the host. Unless the mixed-symbiosis corals in this study are not representative of the typical transition between Cladocopium and Durusdinium, the process of shuffling from one symbiont genus to another appears to be cost-free for the coral host, and even appears to be associated with lower stress susceptibility. This raises optimism for the future corals, which will probably have to rely on symbiont shuffling more and more to withstand environmental challenges.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Recifes de Corais , Dinoflagellida/genética , Fotossíntese , Simbiose/genética
7.
Mol Ecol ; 30(14): 3468-3484, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894013

RESUMO

Broadcast-spawning coral species have wide geographical ranges spanning strong environmental gradients, but it is unclear how much spatially varying selection these gradients actually impose. Strong divergent selection might present a considerable barrier for demographic exchange between disparate reef habitats. We investigated whether the cross-shelf gradient is associated with spatially varying selection in two common coral species, Montastraea cavernosa and Siderastrea siderea, in the Florida Keys. To this end, we generated a de novo genome assembly for M. cavernosa and used 2bRAD to genotype 20 juveniles and 20 adults of both species from each of the three reef zones to identify signatures of selection occurring within a single generation. Unexpectedly, each species was found to be composed of four genetically distinct lineages, with gene flow between them still ongoing but highly reduced in 13.0%-54.7% of the genome. Each species includes two sympatric lineages that are only found in the deep (20 m) habitat, while the other lineages are found almost exclusively on the shallower reefs (3-10 m). The two "shallow" lineages of M. cavernosa are also specialized for either nearshore or offshore: comparison between adult and juvenile cohorts indicates that cross-shelf migrants are more than twice as likely to die before reaching adulthood than local recruits. S. siderea and M. cavernosa are among the most ecologically successful species on the Florida Keys Reef Tract, and this work offers important insight into the genomic background of divergent selection and environmental specialization that may in part explain their resilience and broad environmental range.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Ecossistema , Florida , Deriva Genética
8.
Proc Natl Acad Sci U S A ; 115(52): 13342-13346, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530646

RESUMO

Gene body methylation (GBM) has been hypothesized to modulate responses to environmental change, including transgenerational plasticity, but the evidence thus far has been lacking. Here we show that coral fragments reciprocally transplanted between two distant reefs respond predominantly by increase or decrease in genome-wide GBM disparity: The range of methylation levels between lowly and highly methylated genes becomes either wider or narrower. Remarkably, at a broad functional level this simple adjustment correlated very well with gene expression change, reflecting a shifting balance between expressions of environmentally responsive and housekeeping genes. In our experiment, corals in a lower-quality habitat up-regulated genes involved in environmental responses, while corals in a higher-quality habitat invested more in housekeeping genes. Transplanted fragments showing closer GBM match to local corals attained higher fitness characteristics, which supports GBM's role in acclimatization. Fixed differences in GBM between populations did not align with plastic GBM changes and were mostly observed in genes with elevated FST, which suggests that they arose predominantly through genetic divergence. However, we cannot completely rule out transgenerational inheritance of acquired GBM states.


Assuntos
Aclimatação/genética , Antozoários/genética , Antozoários/fisiologia , Adaptação Fisiológica/genética , Animais , Mudança Climática , Recifes de Corais , Metilação de DNA/genética , Ecossistema , Epigênese Genética/genética , Epigênese Genética/fisiologia , Epigenômica/métodos , Genoma , Metilação
9.
Mol Biol Evol ; 36(1): 28-38, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272243

RESUMO

Introgression is increasingly recognized as a source of genetic diversity that fuels adaptation. Its role in the evolution of sex chromosomes, however, is not well known. Here, we confirm the hypothesis that the Y chromosome in the ninespine stickleback, Pungitius pungitius, was established by introgression from the Amur stickleback, P. sinensis. Using whole genome resequencing, we identified a large region of Chr 12 in P. pungitius that is diverged between males and females. Within but not outside of this region, several lines of evidence show that the Y chromosome of P. pungitius shares a most recent common ancestor not with the X chromosome, but with the homologous chromosome in P. sinensis. Accumulation of repetitive elements and gene expression changes on the new Y are consistent with a young sex chromosome in early stages of degeneration, but other hallmarks of Y chromosomes have not yet appeared. Our findings indicate that porous species boundaries can trigger rapid sex chromosome evolution.


Assuntos
Hibridização Genética , Smegmamorpha/genética , Cromossomo Y , Animais , Feminino , Masculino
10.
Mol Ecol ; 29(15): 2855-2870, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32615003

RESUMO

As climate change progresses, reef-building corals must contend more often with suboptimal conditions, motivating a need to understand coral stress response. Here, we test the hypothesis that there is a stereotyped transcriptional response that corals enact under all stressful conditions, functionally characterized by downregulation of growth, and activation of cell death, response to reactive oxygen species, immunity, and protein folding and degradation. We analyse RNA-seq and Tag-Seq data from 14 previously published studies and supplement them with four new experiments involving different stressors, totaling over 600 gene expression profiles from the genus Acropora. Contrary to expectations, we found not one, but two distinct types of response. The type A response was observed under all kinds of high-intensity stress, was correlated between independent projects and was functionally consistent with the hypothesized stereotyped response. The consistent correlation between projects, irrespective of stress type, supports the type A response as the general coral environmental stress response (ESR), a blanket solution to severely stressful conditions. The distinct type B response was observed under lower intensity stress and was more variable among studies. Unexpectedly, at the level of individual genes and functional categories, the type B response was broadly opposite the type A response. Finally, taking advantage of the breadth of the data set, we present contextual annotations for previously unannotated genes based on consistent stress-induced differences across independent projects.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Estresse Fisiológico/genética , Transcriptoma
11.
Proc Biol Sci ; 286(1901): 20190111, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30991927

RESUMO

Heritable symbioses have been critical for the evolution of life. The genetic consequences of evolving a heritable symbiosis from the perspective of the symbiont are well established, but concomitant changes in the host remain unresolved. In stony corals, heritable, vertical transmission has evolved repeatedly, providing a unique opportunity to investigate the genomic basis of this complex trait. We conducted a comparative analysis of 25 coral transcriptomes to identify orthologous genes exhibiting signatures of positive selection and convergent amino acid substitutions in vertically transmitting lineages. The frequency of convergence events tends to be higher among vertically transmitting lineages, consistent with the proposed role of selection in driving the evolution of convergent transmission mode phenotypes. Of 10 774 orthologous genes, 403 exhibited at least one molecular convergence event and evidence of positive selection in at least one vertically transmitting lineage. Functional enrichments among these top candidate genes include processes previously implicated in symbiosis including endocytosis, immune response, cytoskeletal protein binding and cytoplasmic membrane-bounded vesicles. Finally, several novel candidates were identified among 100 genes showing evidence of positive selection at the particular convergence event, highlighting the value of our approach for generating new insight into host mechanisms associated with the evolution of heritable symbioses.


Assuntos
Antozoários/fisiologia , Evolução Biológica , Seleção Genética , Simbiose , Animais , Antozoários/microbiologia , Evolução Molecular , Transcriptoma
12.
Mol Ecol ; 27(4): 1065-1080, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334418

RESUMO

Global increases in coral disease prevalence have been linked to ocean warming through changes in coral-associated bacterial communities, pathogen virulence and immune system function. However, the interactive effects of temperature and pathogens on the coral holobiont are poorly understood. Here, we assessed three compartments of the holobiont (host, Symbiodinium and bacterial community) of the coral Montipora aequituberculata challenged with the pathogen Vibrio coralliilyticus and the commensal bacterium Oceanospirillales sp. under ambient (27°C) and elevated (29.5 and 32°C) seawater temperatures. Few visual signs of bleaching and disease development were apparent in any of the treatments, but responses were detected in the holobiont compartments. V. coralliilyticus acted synergistically and negatively impacted the photochemical efficiency of Symbiodinium at 32°C, while Oceanospirillales had no significant effect on photosynthetic efficiency. The coral, however, exhibited a minor response to the bacterial challenges, with the response towards V. coralliilyticus being significantly more pronounced, and involving the prophenoloxidase-activating system and multiple immune system-related genes. Elevated seawater temperatures did not induce shifts in the coral-associated bacterial community, but caused significant gene expression modulation in both Symbiodinium and the coral host. While Symbiodinium exhibited an antiviral response and upregulated stress response genes, M. aequituberculata showed regulation of genes involved in stress and innate immune response processes, including immune and cytokine receptor signalling, the complement system, immune cell activation and phagocytosis, as well as molecular chaperones. These observations show that M. aequituberculata is capable of maintaining a stable bacterial community under elevated seawater temperatures and thereby contributes to preventing disease development.


Assuntos
Antozoários/microbiologia , Anti-Infecciosos/farmacologia , Recifes de Corais , Estresse Fisiológico/efeitos dos fármacos , Temperatura , Animais , Antozoários/efeitos dos fármacos , Antozoários/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Água do Mar , Estresse Fisiológico/genética , Transcriptoma/genética
13.
Mol Biol Evol ; 33(9): 2285-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27189563

RESUMO

Gene body methylation (gbM) is an ancestral and widespread feature in Eukarya, yet its adaptive value and evolutionary implications remain unresolved. The occurrence of gbM within protein-coding sequences is particularly puzzling, because methylation causes cytosine hypermutability and hence is likely to produce deleterious amino acid substitutions. We investigate this enigma using an evolutionarily basal group of Metazoa, the stony corals (order Scleractinia, class Anthozoa, phylum Cnidaria). We show that patterns of coral gbM are similar to other invertebrate species, predicting wide and active transcription and slower sequence evolution. We also find a strong correlation between gbM and codon bias, resulting from systematic replacement of CpG bearing codons. We conclude that gbM has strong effects on codon evolution and speculate that this may influence establishment of optimal codons.


Assuntos
Antozoários/genética , Metilação de DNA , Animais , Evolução Biológica , Códon , Citosina/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Taxa de Mutação , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA/métodos
14.
BMC Genomics ; 15: 1109, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25511458

RESUMO

BACKGROUND: In invertebrates, genes belonging to dynamically regulated functional categories appear to be less methylated than "housekeeping" genes, suggesting that DNA methylation may modulate gene expression plasticity. To date, however, experimental evidence to support this hypothesis across different natural habitats has been lacking. RESULTS: Gene expression profiles were generated from 30 pairs of genetically identical fragments of coral Acropora millepora reciprocally transplanted between distinct natural habitats for 3 months. Gene expression was analyzed in the context of normalized CpG content, a well-established signature of historical germline DNA methylation. Genes with weak methylation signatures were more likely to demonstrate differential expression based on both transplant environment and population of origin than genes with strong methylation signatures. Moreover, the magnitude of expression differences due to environment and population were greater for genes with weak methylation signatures. CONCLUSIONS: Our results support a connection between differential germline methylation and gene expression flexibility across environments and populations. Studies of phylogenetically basal invertebrates such as corals will further elucidate the fundamental functional aspects of gene body methylation in Metazoa.


Assuntos
Antozoários/genética , Metilação de DNA , Células Germinativas/metabolismo , Animais , Antozoários/classificação , Ilhas de CpG , Ecossistema , Genoma , Filogenia , Transcriptoma
15.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100353

RESUMO

The sex chromosomes of the guppy, Poecilia reticulata, and its close relatives are of particular interest: they are much younger than the highly degenerate sex chromosomes of model systems such as humans and Drosophila melanogaster, and they carry many of the genes responsible for the males' dramatic coloration. Over the last decade, several studies have analyzed these sex chromosomes using a variety of approaches including sequencing genomes and transcriptomes, cytology, and linkage mapping. Conflicting conclusions have emerged, in particular concerning the history of the sex chromosomes and the evolution of suppressed recombination between the X and Y. Here, we address these controversies by reviewing the evidence and reanalyzing data. We find no evidence of a nonrecombining sex-determining region or evolutionary strata in P. reticulata. Furthermore, we find that the data most strongly support the hypothesis that the sex-determining regions of 2 close relatives of the guppy, Poecilia wingei and Micropoecilia picta, evolved independently after their lineages diverged. We identify possible causes of conflicting results in previous studies and suggest best practices going forward.


Assuntos
Poecilia , Animais , Mapeamento Cromossômico , Drosophila melanogaster/genética , Genoma , Masculino , Poecilia/genética , Cromossomos Sexuais/genética
16.
Nat Med ; 28(4): 823-830, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35145311

RESUMO

The mRNA-1273 vaccine for coronavirus disease 2019 (COVID-19) demonstrated 93.2% efficacy in reduction of symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the blinded portion of the Phase 3 Coronavirus Efficacy (COVE) trial. While mRNA-1273 demonstrated high efficacy in prevention of COVID-19, including severe disease, its effect on the viral dynamics of SARS-CoV-2 infections is not understood. Here, in exploratory analyses, we assessed the impact of mRNA-1273 vaccination in the ongoing COVE trial (number NCT04470427) on SARS-CoV-2 copy number and shedding, burden of disease and infection, and viral variants. Viral variants were sequenced in all COVID-19 and adjudicated COVID-19 cases (n = 832), from July 2020 in the blinded part A of the study to May 2021 of the open-label part B of the study, in which participants in the placebo arm started to receive the mRNA-1273 vaccine after US Food and Drug Administration emergency use authorization of mRNA-1273 in December 2020. mRNA-1273 vaccination significantly reduced SARS-CoV-2 viral copy number (95% confidence interval) by 100-fold on the day of diagnosis compared with placebo (4.1 (3.4-4.8) versus 6.2 (6.0-6.4) log10 copies per ml). Median times to undetectable viral copies were 4 days for mRNA-1273 and 7 days for placebo. Vaccination also substantially reduced the burden of disease and infection scores. Vaccine efficacies (95% confidence interval) against SARS-CoV-2 variants circulating in the United States during the trial assessed in this post hoc analysis were 82.4% (40.4-94.8%) for variants Epsilon and Gamma and 81.2% (36.1-94.5%) for Epsilon. The detection of other, non-SARS-CoV-2, respiratory viruses during the trial was similar between groups. While additional study is needed, these data show that in SARS-CoV-2-infected individuals, vaccination reduced both the viral copy number and duration of detectable viral RNA, which may be markers for the risk of virus transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Estados Unidos
17.
Mol Ecol Resour ; 21(2): 464-477, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33058551

RESUMO

Interrogation of chromatin modifications, such as DNA methylation, has the potential to improve forecasting and conservation of marine ecosystems. The standard method for assaying DNA methylation (whole genome bisulphite sequencing), however, is currently too costly to apply at the scales required for ecological research. Here, we evaluate different methods for measuring DNA methylation for ecological epigenetics. We compare whole genome bisulphite sequencing (WGBS) with methylated CpG binding domain sequencing (MBD-seq), and a modified version of MethylRAD we term methylation-dependent restriction site-associated DNA sequencing (mdRAD). We evaluate these three assays in measuring variation in methylation across the genome, between genotypes, and between polyp types in the reef-building coral Acropora millepora. We find that all three assays measure absolute methylation levels similarly for gene bodies (gbM), as well as exons and 1 Kb windows with a minimum Pearson correlation 0.66. Differential gbM estimates were less correlated, but still concurrent across assays. We conclude that MBD-seq and mdRAD are reliable and cost-effective alternatives to WGBS. The considerably lower sequencing effort required for mdRAD to produce comparable methylation estimates makes it particularly useful for ecological epigenetics.


Assuntos
Antozoários , Metilação de DNA , Animais , Antozoários/genética , Ilhas de CpG , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
18.
Sci Rep ; 10(1): 17554, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067497

RESUMO

Caves offer selective pressures that are distinct from the surface. Organisms that have evolved to exist under these pressures typically exhibit a suite of convergent characteristics, including a loss or reduction of eyes and pigmentation. As a result, cave-obligate taxa, termed troglobionts, are no longer viable on the surface. This circumstance has led to an understanding of highly constrained dispersal capabilities, and the prediction that, in the absence of subterranean connections, extreme genetic divergence between cave populations. An effective test of this model would involve (1) common troglobionts from (2) nearby caves in a cave-dense region, (3) good sample sizes per cave, (4) multiple taxa, and (5) genome-wide characterization. With these criteria in mind, we used RAD-seq to genotype an average of ten individuals of the troglobiotic spider Nesticus barri and the troglobiotic beetle Ptomaphagus hatchi, each from four closely located caves (ranging from 3 to 13 km apart) in the cave-rich southern Cumberland Plateau of Tennessee, USA. Consistent with the hypothesis of highly restricted dispersal, we find that populations from separate caves are indeed highly genetically isolated. Our results support the idea of caves as natural laboratories for the study of parallel evolutionary processes.


Assuntos
Cavernas , Besouros/genética , Genética Populacional , Polimorfismo de Nucleotídeo Único , Aranhas/genética , Distribuição Animal , Animais , Evolução Molecular , Biblioteca Gênica , Genótipo , Geografia , Metagenômica , Filogenia , Pigmentação , Tennessee
19.
PeerJ ; 7: e6541, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842908

RESUMO

BACKGROUND: Coral reefs are major hotspots of diversity for marine fishes, yet there is still ongoing debate on the mechanisms that promote divergence in these rich ecosystems. Our understanding of how diversity originates in this environment could be enhanced by investigating the evolutionary dynamics of closely related fishes with overlapping ranges. Here, we focus on grunts of the genus Haemulon, a group of coral reef fishes with 15 species in the Western Atlantic, 11 of which are syntopic. METHODS: Wild fish samples from three sympatric species of the Caribbean: Haemulon flavolineatum, H. carbonarium and H. macrostomum, were collected while SCUBA diving. RNA was extracted from livers, and the transcriptomes were assembled and annotated to investigate positive selection (Pairwise d N/d S) and patterns of gene expression between the three species. RESULTS: Pairwise d N/d S analyses showed evidence of positive selection for genes associated with immune response, cranial morphology and formation of the anterior-posterior axis. Analyses of gene expression revealed that despite their sympatric distribution, H. macrostomum showed upregulation of oxidation-reduction machinery, while there was evidence for activation of immune response in H. carbonarium. DISCUSSION: Overall, our analyses suggest closely related grunts show important differences in genes associated with body shape and feeding morphology, a result in-line with previous morphological studies in the group. Further, despite their overlapping distribution they interact with their environment in distinct fashions. This is the largest compendium of genomic information for grunts thus far, representing a valuable resource for future studies in this unique group of coral reef fishes.

20.
Science ; 348(6242): 1460-2, 2015 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-26113720

RESUMO

As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection.


Assuntos
Aclimatação/genética , Antozoários/genética , Antozoários/fisiologia , Recifes de Corais , Aquecimento Global , Temperatura Alta , Animais , Extinção Biológica , Expressão Gênica , Frequência do Gene , Marcadores Genéticos , Larva/genética , Larva/fisiologia , Seleção Genética , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA