Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mol Cell ; 56(2): 205-218, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25242145

RESUMO

Many cancer cells consume large quantities of glutamine to maintain TCA cycle anaplerosis and support cell survival. It was therefore surprising when RNAi screening revealed that suppression of citrate synthase (CS), the first TCA cycle enzyme, prevented glutamine-withdrawal-induced apoptosis. CS suppression reduced TCA cycle activity and diverted oxaloacetate, the substrate of CS, into production of the nonessential amino acids aspartate and asparagine. We found that asparagine was necessary and sufficient to suppress glutamine-withdrawal-induced apoptosis without restoring the levels of other nonessential amino acids or TCA cycle intermediates. In complete medium, tumor cells exhibiting high rates of glutamine consumption underwent rapid apoptosis when glutamine-dependent asparagine synthesis was suppressed, and expression of asparagine synthetase was statistically correlated with poor prognosis in human tumors. Coupled with the success of L-asparaginase as a therapy for childhood leukemia, the data suggest that intracellular asparagine is a critical suppressor of apoptosis in many human tumors.


Assuntos
Apoptose/genética , Asparagina/metabolismo , Aspartato-Amônia Ligase/antagonistas & inibidores , Citrato (si)-Sintase/genética , Glutamina/deficiência , Fator 4 Ativador da Transcrição/metabolismo , Asparagina/biossíntese , Asparagina/química , Aspartato-Amônia Ligase/biossíntese , Ácido Aspártico/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ciclo do Ácido Cítrico , Humanos , Ácido Oxaloacético/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
2.
Mol Cell ; 47(4): 585-95, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22795132

RESUMO

Caspase inhibition is a promising approach for treating multiple diseases. Using a reconstituted assay and high-throughput screening, we identified a group of nonpeptide caspase inhibitors. These inhibitors share common chemical scaffolds, suggesting the same mechanism of action. They can inhibit apoptosis in various cell types induced by multiple stimuli; they can also inhibit caspase-1-mediated interleukin generation in macrophages, indicating potential anti-inflammatory application. While these compounds inhibit all the tested caspases, kinetic analysis indicates they do not compete for the catalytic sites of the enzymes. The cocrystal structure of one of these compounds with caspase-7 reveals that it binds to the dimerization interface of the caspase, another common structural element shared by all active caspases. Consistently, biochemical analysis demonstrates that the compound abates caspase-8 dimerization. Based on these kinetic, biochemical, and structural analyses, we suggest that these compounds are allosteric caspase inhibitors that function through binding to the dimerization interface of caspases.


Assuntos
Inibidores de Caspase/química , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Sequência de Aminoácidos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X/métodos , Citocromos c/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Interleucinas/metabolismo , Cinética , Dados de Sequência Molecular , Mutagênese/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
3.
J Virol ; 88(10): 5533-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24599995

RESUMO

UNLABELLED: Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds-dihydrodibenzothiepines (DHBTs), identified through high-throughput screening-with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. IMPORTANCE: The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same cellular pathways, may have therapeutic potential for the treatment of dengue virus infections.


Assuntos
Antivirais/metabolismo , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Dopamina D4/antagonistas & inibidores , Transdução de Sinais , Replicação Viral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Sindbis virus/efeitos dos fármacos , Sindbis virus/fisiologia , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/fisiologia
4.
J Nat Prod ; 78(12): 2917-23, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26641525

RESUMO

An extremophilic fungus identified as a Pleurostomophora sp. was isolated from the Berkeley Pit, an acid mine waste lake. When grown in liquid culture, the fungus produced berkchaetoazaphilones A-C (1, 2, and 5), the red pigment berkchaetorubramine (6), and the known compound 4-(hydroxymethyl)quinoline. These compounds were evaluated as inhibitors of matrix metalloproteinase-3, caspase-1, and proinflammatory cytokine production in induced THP-1 cells. Berkchaetoazaphilone B (2) inhibited IL-1ß, TNFα, and IL-6 production in the induced inflammasome assay and was cytotoxic toward human retinoblastoma cell line Y79 (IC50 = 1.1 µM), leukemia cell lines CCRF-CEM and SR, and the melanoma cell line LOX IMVI (IC50 = 10 µM).


Assuntos
Benzopiranos/isolamento & purificação , Benzopiranos/farmacologia , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/farmacologia , Ascomicetos/química , Benzopiranos/química , Caspase 1/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Leucemia/tratamento farmacológico , Melanoma/tratamento farmacológico , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Pigmentos Biológicos/química , Quinolinas/química , Quinolinas/isolamento & purificação , Fator de Necrose Tumoral alfa/antagonistas & inibidores
5.
J Virol ; 87(17): 9411-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824813

RESUMO

Dengue virus has emerged as a global health threat to over one-third of humankind. As a positive-strand RNA virus, dengue virus relies on the host cell metabolism for its translation, replication, and egress. Therefore, a better understanding of the host cell metabolic pathways required for dengue virus infection offers the opportunity to develop new approaches for therapeutic intervention. In a recently described screen of known drugs and bioactive molecules, we observed that methotrexate and floxuridine inhibited dengue virus infections at low micromolar concentrations. Here, we demonstrate that all serotypes of dengue virus, as well as West Nile virus, are highly sensitive to both methotrexate and floxuridine, whereas other RNA viruses (Sindbis virus and vesicular stomatitis virus) are not. Interestingly, flavivirus replication was restored by folinic acid, a thymidine precursor, in the presence of methotrexate and by thymidine in the presence of floxuridine, suggesting an unexpected role for thymidine in flavivirus replication. Since thymidine is not incorporated into RNA genomes, it is likely that increased thymidine production is indirectly involved in flavivirus replication. A possible mechanism is suggested by the finding that p53 inhibition restored dengue virus replication in the presence of floxuridine, consistent with thymidine-less stress triggering p53-mediated antiflavivirus effects in infected cells. Our data reveal thymidine synthesis pathways as new and unexpected therapeutic targets for antiflaviviral drug development.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/metabolismo , Flavivirus/efeitos dos fármacos , Flavivirus/metabolismo , Timidina/biossíntese , Animais , Linhagem Celular , Chlorocebus aethiops , Vírus de DNA/efeitos dos fármacos , Vírus da Dengue/fisiologia , Modelos Animais de Doenças , Flavivirus/fisiologia , Infecções por Flavivirus/tratamento farmacológico , Floxuridina/farmacologia , Células HEK293 , Células HeLa , Humanos , Leucovorina/farmacologia , Metotrexato/farmacologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Vírus de RNA/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/fisiologia
6.
J Pathol ; 229(5): 743-754, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23288701

RESUMO

Oncogenic rearrangements of the TFE3 transcription factor gene are found in two distinct human cancers. These include ASPSCR1-TFE3 in all cases of alveolar soft part sarcoma (ASPS) and ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3 and others in a subset of paediatric and adult RCCs. Here we examined the functional properties of the ASPSCR1-TFE3 fusion oncoprotein, defined its target promoters on a genome-wide basis and performed a high-throughput RNA interference screen to identify which of its transcriptional targets contribute to cancer cell proliferation. We first confirmed that ASPSCR1-TFE3 has a predominantly nuclear localization and functions as a stronger transactivator than native TFE3. Genome-wide location analysis performed on the FU-UR-1 cell line, which expresses endogenous ASPSCR1-TFE3, identified 2193 genes bound by ASPSCR1-TFE3. Integration of these data with expression profiles of ASPS tumour samples and inducible cell lines expressing ASPSCR1-TFE3 defined a subset of 332 genes as putative up-regulated direct targets of ASPSCR1-TFE3, including MET (a previously known target gene) and 64 genes as down-regulated targets of ASPSCR1-TFE3. As validation of this approach to identify genuine ASPSCR1-TFE3 target genes, two up-regulated genes bound by ASPSCR1-TFE3, CYP17A1 and UPP1, were shown by multiple lines of evidence to be direct, endogenous targets of transactivation by ASPSCR1-TFE3. As the results indicated that ASPSCR1-TFE3 functions predominantly as a strong transcriptional activator, we hypothesized that a subset of its up-regulated direct targets mediate its oncogenic properties. We therefore chose 130 of these up-regulated direct target genes to study in high-throughput RNAi screens, using FU-UR-1 cells. In addition to MET, we provide evidence that 11 other ASPSCR1-TFE3 target genes contribute to the growth of ASPSCR1-TFE3-positive cells. Our data suggest new therapeutic possibilities for cancers driven by TFE3 fusions. More generally, this work establishes a combined integrated genomics/functional genomics strategy to dissect the biology of oncogenic, chimeric transcription factors.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fusão Gênica , Genômica , Proteínas de Fusão Oncogênica/genética , Sarcoma Alveolar de Partes Moles/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células COS , Núcleo Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Chlorocebus aethiops , Imunoprecipitação da Cromatina , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Genômica/métodos , Genótipo , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Fusão Oncogênica/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Interferência de RNA , Reprodutibilidade dos Testes , Sarcoma Alveolar de Partes Moles/metabolismo , Sarcoma Alveolar de Partes Moles/patologia , Ativação Transcricional , Transfecção
7.
Proc Natl Acad Sci U S A ; 108(39): 16375-80, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21930909

RESUMO

We previously described four small molecules that reduced the growth of lung adenocarcinoma cell lines with either epidermal growth factor receptor (EGFR) or KRAS mutations in a high-throughout chemical screen. By combining affinity proteomics and gene expression analysis, we now propose superoxide dismutase 1 (SOD1) as the most likely target of one of these small molecules, referred to as lung cancer screen 1 (LCS-1). siRNAs against SOD1 slowed the growth of LCS-1 sensitive cell lines; conversely, expression of a SOD1 cDNA increased proliferation of H358 cells and reduced sensitivity of these cells to LCS-1. In addition, SOD1 enzymatic activity was inhibited in vitro by LCS-1 and two closely related analogs. These results suggest that SOD1 is an LCS-1-binding protein that may act in concert with mutant proteins, such as EGFR and KRAS, to promote cell growth, providing a therapeutic target for compounds like LCS-1.


Assuntos
Adenocarcinoma/patologia , Divisão Celular/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Superóxido Dismutase/metabolismo , Adenocarcinoma/enzimologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/enzimologia , RNA Interferente Pequeno/genética , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase-1
8.
GEN Biotechnol ; 2(2): 133-148, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37928776

RESUMO

Dengue is the most common mosquito-borne viral disease that in recent years has become a major international public health concern. Dengue is a tropical neglected disease with increasing global incidences, affecting millions of people worldwide, and without the availability of specific treatments to combat it. The identification of host-target genes essential for the virus life cycle, for which effective modulators may already exist, would provide an alternative path to a rapid drug development of the much needed antidengue agents. For this purpose, we performed the first genome-wide RNAi screen, combining two high-content readouts for dengue virus infection (DENV E infection intensity) and host cell toxicity (host cell stained nuclei), against an arrayed lentiviral-based short hairpin RNA library covering 16,000 genes with a redundancy of at least 5 hairpins per gene. The screen identified 1924 gene candidates in total; of which, 1730 gene candidates abrogated dengue infection, whereas 194 gene candidates were found to enhance its infectivity in HEK293 cells. A first pass clustering analysis of hits revealed a well-orchestrated gene-network dependency on host cell homeostasis and physiology triggering distinct cellular pathways for infectivity, replication, trafficking, and egress; a second analysis revealed a comprehensive gene signature of 331 genes common to hits identified in 28 published RNAi host-viral interaction screens. Taken together, our findings provide novel antiviral molecular targets with the potential for drug discovery and development.

9.
Proc Natl Acad Sci U S A ; 106(48): 20228-33, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19906985

RESUMO

gamma-Secretase cleaves multiple substrates within the transmembrane domain that include the amyloid precursor protein as well as the Notch family of receptors. These substrates are associated with Alzheimer disease and cancer. Despite extensive investigation of this protease, little is known regarding the regulation of gamma-secretase specificity. To discover selective inhibitors for drug development and for probing the mechanisms of gamma-secretase specificity, we screened chemical libraries and consequently developed a di-coumarin family of inhibitors that preferentially inhibit gamma-secretase-mediated production of Abeta42 over other cleavage activities. These coumarin dimer-based compounds interact with gamma-secretase by binding to an allosteric site. By developing a multiple photo-affinity probe approach, we demonstrate that this allosteric binding causes a conformational change within the active site of gamma-secretase at the S2 and S1 sub-sites that leads to selective inhibition of Abeta42. In conclusion, by using these di-coumarin compounds, we reveal a mechanism by which gamma-secretase specificity is regulated and provide insights into the molecular basis by which familial presenilin mutations may affect the active site and specificity of gamma-secretase. Furthermore, this class of selective inhibitors provides the basis for development of Alzheimer disease therapeutic agents.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cumarínicos/farmacologia , Conformação Proteica , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Cumarínicos/metabolismo , Descoberta de Drogas , Humanos , Cinética , Mutação/genética , Marcadores de Fotoafinidade , Presenilinas/genética , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Especificidade por Substrato
10.
Mol Cancer Ther ; 21(5): 775-785, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35413118

RESUMO

Significant strides have been made in the development of precision therapeutics for cancer. Aberrantly expressed glycoproteins represent a potential avenue for therapeutic development. The MUC16/CA125 glycoprotein serves as a biomarker of disease and a driver of malignant transformation in epithelial ovarian cancer. Previously, we demonstrated a proof-of-principle approach to selectively targeting MUC16+ cells. In this report, we performed a synthetic lethal kinase screen using a human kinome RNAi library and identified key pathways preferentially targetable in MUC16+ cells using isogenic dual-fluorescence ovarian cancer cell lines. Using a separate approach, we performed high-content small-molecule screening of six different libraries of 356,982 compounds for MUC16/CA125-selective agents and identified lead candidates that showed preferential cytotoxicity in MUC16+ cells. Compounds with differential activity were selected and tested in various other ovarian cell lines or isogenic pairs to identify lead compounds for structure-activity relationship (SAR) selection. Lead siRNA and small-molecule inhibitor candidates preferentially inhibited invasion of MUC16+ cells in vitro and in vivo, and we show that this is due to decreased activation of MAPK, and non-receptor tyrosine kinases. Taken together, we present a comprehensive screening approach to the development of a novel class of MUC16-selective targeted therapeutics and identify candidates suitable for further clinical development.


Assuntos
Proteínas de Membrana , Neoplasias Ovarianas , Antígeno Ca-125/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Feminino , Fluorescência , Humanos , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
11.
Clin Cancer Res ; 28(1): 175-186, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667024

RESUMO

PURPOSE: Dedifferentiated liposarcoma (DDLS), one of the most common and aggressive sarcomas, infrequently responds to chemotherapy. DDLS survival and growth depend on underexpression of C/EBPα, a tumor suppressor and transcriptional regulator controlling adipogenesis. We sought to screen and prioritize candidate drugs that increase C/EBPα expression and may therefore serve as differentiation-based therapies for DDLS. EXPERIMENTAL DESIGN: We screened known bioactive compounds for the ability to restore C/EBPα expression and inhibit proliferation selectively in two DDLS cell lines but not in normal adipose-derived stem cells (ASC). Selected hits' activity was validated, and the mechanism of the most potent, SN-38, was investigated. The in vivo efficacy of irinotecan, the prodrug of SN-38, was evaluated in DDLS xenograft models. RESULTS: Of 3,119 compounds, screen criteria were met by 19. Validation experiments confirmed the DDLS selectivity of deguelin, emetine, and SN-38 and showed that they induce apoptosis in DDLS cells. SN-38 had the lowest IC50 (approximately 10 nmol/L), and its pro-apoptotic effects were countered by knockdown of CEBPA but not of TP53. Irinotecan significantly inhibited tumor growth at well-tolerated doses, induced nuclear expression of C/EBPα, and inhibited HIF1α expression in DDLS patient-derived and cancer cell line xenograft models. In contrast, doxorubicin, the most common treatment for nonresectable DDLS, reduced tumor growth by 30% to 50% at a dose that caused weight loss. CONCLUSIONS: This high-content screen revealed potential treatments for DDLS. These include irinotecan, which induces apoptosis of DDLS cells in a C/EBPα-dependent, p53-independent manner, and should be clinically evaluated in patients with advanced DDLS.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Proteínas Estimuladoras de Ligação a CCAAT , Lipossarcoma , Adipócitos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/análise , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/análise , Genes Supressores de Tumor , Humanos , Lipossarcoma/tratamento farmacológico , Lipossarcoma/genética , Lipossarcoma/patologia , Células-Tronco/metabolismo
12.
Cell Rep ; 38(6): 110343, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139387

RESUMO

Phenotype-based screening can identify small molecules that elicit a desired cellular response, but additional approaches are required to characterize their targets and mechanisms of action. Here, we show that a compound termed LCS3, which selectively impairs the growth of human lung adenocarcinoma (LUAD) cells, induces oxidative stress. To identify the target that mediates this effect, we use thermal proteome profiling (TPP) and uncover the disulfide reductases GSR and TXNRD1 as targets. We confirm through enzymatic assays that LCS3 inhibits disulfide reductase activity through a reversible, uncompetitive mechanism. Further, we demonstrate that LCS3-sensitive LUAD cells are sensitive to the synergistic inhibition of glutathione and thioredoxin pathways. Lastly, a genome-wide CRISPR knockout screen identifies NQO1 loss as a mechanism of LCS3 resistance. This work highlights the ability of TPP to uncover targets of small molecules identified by high-throughput screens and demonstrates the potential therapeutic utility of inhibiting disulfide reductases in LUAD.


Assuntos
Neoplasias Pulmonares/patologia , Estresse Oxidativo/fisiologia , Oxirredutases/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Glutationa/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo
13.
Bioorg Med Chem Lett ; 21(15): 4528-32, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21719286

RESUMO

Selective inhibitors of human peptide deformylase (HsPDF) are predicted to constitute a new class of antitumor agents. We report the identification of benzofuran-4,5-diones as the first known selective HsPDF inhibitors and we describe their selectivity profile in a panel of metalloproteases. We characterize their structure-activity relationships for antitumor activity in a panel of cancer cell lines, and we assess their in vivo efficacy in a mouse xenograft model. Our results demonstrate that selective HsPDF inhibitors based on the benzofuran-4,5-dione scaffold constitute a novel class of antitumor agents that are potent in vitro and in vivo.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antineoplásicos/química , Benzofuranos/química , Inibidores Enzimáticos/química , Amidoidrolases/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Benzofuranos/uso terapêutico , Benzofuranos/toxicidade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/toxicidade , Humanos , Ácidos Hidroxâmicos/química , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Transplante Heterólogo
14.
Bioorg Med Chem Lett ; 19(24): 6872-6, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19889540

RESUMO

We report the design, synthesis, and structure-activity relationship (SAR) of a series of novel pyrido[2,3-d]pyrimidin-7-one compounds as potent Abl kinase inhibitors. We evaluate their specificity profile against a panel of human recombinant kinases, as well as their biological profile toward a panel of well-characterized cancer cell lines. Our study reveals that substitutions in the 3- and 4-positions of the phenylamino moiety lead to improved potency and improved selectivity both in target-based and cell-based assays. Altogether, our results provide an insight into the SAR of pyrido[2,3-d]pyrimidin-7-ones for the development of drug candidates with improved potency and selectivity for the targeted treatment of CML.


Assuntos
Antineoplásicos/química , Proteínas Oncogênicas v-abl/antagonistas & inibidores , Piridinas/química , Piridonas/química , Pirimidinas/química , Pirimidinonas/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Piridinas/farmacologia , Piridonas/farmacologia , Pirimidinas/farmacologia , Pirimidinonas/farmacologia , Relação Estrutura-Atividade
15.
J Virol ; 81(24): 13392-402, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17928345

RESUMO

The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather, it blocks processing of viral structural proteins and assembly of mature progeny virions. The isolation of mitoxantrone-resistant vaccinia strains underscores that a viral protein is the likely target of the drug. Whole-genome sequencing of mitoxantrone-resistant viruses pinpointed missense mutations in the N-terminal domain of vaccinia DNA ligase. Despite its favorable activity in cell culture, mitoxantrone administered intraperitoneally at the maximum tolerated dose failed to protect mice against a lethal intranasal infection with vaccinia virus.


Assuntos
Antineoplásicos , Antivirais , Mitoxantrona , Vaccinia virus/efeitos dos fármacos , Vírion/metabolismo , Montagem de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antivirais/administração & dosagem , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mitoxantrona/administração & dosagem , Mitoxantrona/farmacologia , Mitoxantrona/uso terapêutico , Organismos Livres de Patógenos Específicos , Vacínia/prevenção & controle , Vacínia/virologia , Vaccinia virus/genética
16.
J Biomol Screen ; 13(4): 285-94, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18349423

RESUMO

Although proteases represent an estimated 5% to 10% of potential drug targets, inhibitors for metalloproteases (MPs) account for only a small proportion of all approved drugs, failures of which have typically been associated with lack of selectivity. In this study, the authors describe a novel and universal binding assay based on an actinonin derivative and show its binding activities for several MPs and its lack of activity toward all the non-MPs tested. This newly developed assay would allow for the rapid screening for inhibitors of a given MP and for the selectivity profiling of the resulting hits. The assay has successfully enabled for the first time simultaneous profiling of 8 well-known inhibitors against a panel of selected MPs. Previously published activities for these inhibitors were confirmed, and the authors have also discovered new molecular targets for some of them. The authors conclude that their profiling platform provides a generic assay solution for the identification of novel metalloprotease inhibitors as well as their selectivity profiling using a simple and homogeneous assay.


Assuntos
Inibidores Enzimáticos/análise , Metaloproteases/antagonistas & inibidores , Animais , Antígenos CD13/antagonistas & inibidores , Bovinos , Inibidores Enzimáticos/química , Polarização de Fluorescência , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Filogenia , Projetos Piloto , Suínos
17.
Eur J Med Chem ; 43(9): 2004-10, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18191304

RESUMO

The synthesis, antileukemic and antiplatelet activity evaluation of 2,3-diaryl-6,7-dihydro-5H-1,4-diazepines are described. In general, it was found that compound 17o showed moderate antileukemic activity against MOLT3 human leukemic cancer cell lines. An arachidonic acid induced platelet aggregation effect on washed rat platelets was studied. Compound 17i was found to be the most potent. The antiplatelet properties may be mediated by interference with the arachidonic acid pathway.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Azepinas/síntese química , Azepinas/farmacologia , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/farmacologia , Animais , Antineoplásicos/química , Azepinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Ratos
18.
J Enzyme Inhib Med Chem ; 23(6): 931-45, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18608772

RESUMO

In response to the need for inexpensive high throughput assays for anti-cancer drug screening, a 1536-well microtiter plate based assay utilizing the Alamar Blue fluorescent dye as a measure of cellular growth was validated in 10 microL assay volume. Its robustness was assessed in a screen against a library of 2000 known bioactives; with an overall Z' value of 0.89 for assay robustness, several known cytotoxic agents were identified including and not limited to anthracyclines, cardiac glycosides, gamboges, and quinones. To further test the sensitivity of the assay, IC50 determinations were performed in both 384-well and 1536-well formats and the obtained results show a very good correlation between the two density formats. These findings demonstrate that this newly developed assay is simple to set up, robust, highly sensitive and inexpensive. It could potentially provide a rapid way to screen established and primary tumor cell lines against large chemical libraries.


Assuntos
Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Concentração Inibidora 50 , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/toxicidade
19.
SLAS Discov ; 23(4): 321-329, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28467117

RESUMO

Compound optical interference remains an inherent problem in chemical screening and has been well documented for biochemical assays and less so for automated microscopy-based assays. It has also been the assumption that the latter should not suffer from such interference because of the washing steps involved in the process, thus eliminating the residual nonspecific compound effects. Instead, these compounds may have no relevance to the actual target, and as such, compound optical interference contributes to a number of false-positives, resulting in a high attrition rate during subsequent follow-up studies. In this report, we analyze the outcome of a high-content screen using enhanced green fluorescent protein as a reporter in a gain-of-function cell-based assay in search of modulators of the micro RNA (miRNA) biogenesis pathway. Using a previously validated image-based biosensor, we screened a diverse library collection of ~315,000 compounds covering natural and synthetic derivatives in which 1130 positives were identified to enhance green fluorescence expression. Lateral confirmation and dose-response studies revealed that all of these compounds were the result of optical interference and not specific inhibition of miRNA biogenesis. Here, we highlight the chemical classes that are susceptible to compound optical interference and discuss their implications in automated microscopy-based assays.


Assuntos
Preparações Farmacêuticas/química , Bioensaio/métodos , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Fluorescência , Proteínas de Fluorescência Verde/química , Células HeLa , Ensaios de Triagem em Larga Escala/métodos , Humanos , MicroRNAs/metabolismo , Microscopia/métodos
20.
Cell Rep ; 24(8): 2155-2166, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134175

RESUMO

The phosphatidylinositol 3 kinase (PI3K)-glycogen synthase kinase ß (GSK3ß) axis plays a central role in MYC-driven lymphomagenesis, and MYC targeting with bromodomain and extraterminal protein family inhibitors (BETi) is a promising treatment strategy in lymphoma. In a high-throughput combinatorial drug screening experiment, BETi enhance the antiproliferative effects of PI3K inhibitors in a panel of diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma cell lines. BETi or MYC silencing upregulates several PI3K pathway genes and induces GSK3ß S9 inhibitory phosphorylation, resulting in increased ß-catenin protein abundance. Furthermore, BETi or MYC silencing increases GSK3ß S9 phosphorylation levels and ß-catenin protein abundance through downregulating the E2 ubiquitin conjugating enzymes UBE2C and UBE2T. In a mouse xenograft DLBCL model, BETi decrease MYC, UBE2C, and UBE2T and increase phospho-GSK3ß S9 levels, enhancing the anti-proliferative effect of PI3K inhibitors. Our study reveals prosurvival feedbacks induced by BETi involving GSK3ß regulation, providing a mechanistic rationale for combination strategies.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Linfoma Difuso de Grandes Células B/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA