Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(10): e2214888120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36853945

RESUMO

Necrosis in the tumor interior is a common feature of aggressive cancers that is associated with poor clinical prognosis and the development of metastasis. How the necrotic core promotes metastasis remains unclear. Here, we report that emergence of necrosis inside the tumor is correlated temporally with increased tumor dissemination in a rat breast cancer model and in human breast cancer patients. By performing spatially focused transcriptional profiling, we identified angiopoietin-like 7 (Angptl7) as a tumor-specific factor localized to the perinecrotic zone. Functional studies showed that Angptl7 loss normalizes central necrosis, perinecrotic dilated vessels, metastasis, and reduces circulating tumor cell counts to nearly zero. Mechanistically, Angptl7 promotes vascular permeability and supports vascular remodeling in the perinecrotic zone. Taken together, these findings show that breast tumors actively produce factors controlling central necrosis formation and metastatic dissemination from the tumor core.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Células Neoplásicas Circulantes , Animais , Feminino , Humanos , Ratos , Proteína 7 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/genética , Neoplasias da Mama/genética , Necrose
2.
Mol Pharmacol ; 99(6): 435-447, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795352

RESUMO

Rearranged during transfection (RET) rearrangements occur in 1% to 2% of lung adenocarcinomas as well as other malignancies and are now established targets for tyrosine kinase inhibitors. We developed three novel RET fusion-positive (RET+) patient-derived cancer cell lines, CUTO22 [kinesin 5B (KIF5B)-RET fusion], CUTO32 (KIF5B-RET fusion), and CUTO42 (echinoderm microtubule-associated protein-like 4-RET fusion), to study RET signaling and response to therapy. We confirmed each of our cell lines expresses the RET fusion protein and assessed their sensitivity to RET inhibitors. We found that the CUTO22 and CUTO42 cell lines were sensitive to multiple RET inhibitors, whereas the CUTO32 cell line was >10-fold more resistant to three RET inhibitors. We discovered that our RET+ cell lines had differential regulation of the mitogen-activated protein kinase and phosphoinositide 3-kinase/protein kinase B (AKT) pathways. After inhibition of RET, the CUTO42 cells had robust inhibition of phosphorylated AKT (pAKT), whereas CUTO22 and CUTO32 cells had sustained AKT activation. Next, we performed a drug screen, which revealed that the CUTO32 cells were sensitive (<1 nM IC50) to inhibition of two cell cycle-regulating proteins, polo-like kinase 1 and Aurora kinase A. Finally, we show that two of these cell lines, CUTO32 and CUTO42, successfully establish xenografted tumors in nude mice. We demonstrated that the RET inhibitor BLU-667 was effective at inhibiting tumor growth in CUTO42 tumors but had a much less profound effect in CUTO32 tumors, consistent with our in vitro experiments. These data highlight the utility of new RET+ models to elucidate differences in response to tyrosine kinase inhibitors and downstream signaling regulation. Our RET+ cell lines effectively recapitulate the interpatient heterogeneity observed in response to RET inhibitors and reveal opportunities for alternative or combination therapies. SIGNIFICANCE STATEMENT: We have derived and characterized three novel rearranged during transfection (RET) fusion non-small cell lung cancer cell lines and demonstrated that they have differential responses to RET inhibition as well as regulation of downstream signaling, an area that has previously been limited by a lack of diverse cell line modes with endogenous RET fusions. These data offer important insight into regulation of response to RET tyrosine kinase inhibitors and other potential therapeutic targets.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Transdução de Sinais , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Annu Rev Pathol ; 18: 231-256, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36207009

RESUMO

Metastatic dissemination has lethal consequences for cancer patients. Accruing evidence supports the hypothesis that tumor cells can migrate and metastasize as clusters of cells while maintaining contacts with one another. Collective metastasis enables tumor cells to colonize secondary sites more efficiently, resist cell death, and evade the immune system. On the other hand, tumor cell clusters face unique challenges for dissemination particularly during systemic dissemination. Here, we review recent progress toward understanding how tumor cell clusters overcome these disadvantages as well as mechanisms they utilize to gain advantages throughout the metastatic process. We consider useful models for studying collective metastasis and reflect on how the study of collective metastasis suggests new opportunities for eradicating and preventing metastatic disease.


Assuntos
Neoplasias , Humanos , Movimento Celular
4.
Clin Cancer Res ; 27(5): 1463-1475, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355298

RESUMO

PURPOSE: Approved therapies for EGFR exon 20, ERBB2 mutations, and NRG1 fusions are currently lacking for non-small cell lung cancer and other cancers. Tarloxotinib is a prodrug that harnesses tumor hypoxia to generate high levels of a potent, covalent pan-HER tyrosine kinase inhibitor, tarloxotinib-effector (tarloxotinib-E), within the tumor microenvironment. This tumor-selective delivery mechanism was designed to minimize the dose-limiting toxicities that are characteristic of systemic inhibition of wild-type EGFR. EXPERIMENTAL DESIGN: Novel and existing patient-derived cell lines and xenografts harboring EGFR exon 20 insertion mutations, ERBB2 mutations and amplification, and NRG1 fusions were tested in vitro and in vivo with tarloxotinib to determine its impact on cancer cell proliferation, apoptosis, and cell signaling. RESULTS: Tarloxotinib-E inhibited cell signaling and proliferation in patient-derived cancer models in vitro by directly inhibiting phosphorylation and activation of EGFR, HER2, and HER2/HER3 heterodimers. In vivo, tarloxotinib induced tumor regression or growth inhibition in multiple murine xenograft models. Pharmacokinetic analysis confirmed markedly higher levels of tarloxotinib-E in tumor tissue than plasma or skin. Finally, a patient with lung adenocarcinoma harboring an ERBB2 exon 20 p.A775_G776insYVMA mutation demonstrated a dramatic clinical response to tarloxotinib. CONCLUSIONS: Experimental data with tarloxotinib validate the novel mechanism of action of a hypoxia-activated prodrug in cancer models by concentrating active drug in the tumor versus normal tissue, and this activity can translate into clinical activity in patients.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Hipóxia/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adulto , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Mutação , Fosforilação , Prognóstico , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Cycle ; 17(11): 1329-1344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30037299

RESUMO

The tumor suppressor protein p53 is central to the cellular stress response and may be a predictive biomarker for cancer treatments. Upon stress, wildtype p53 accumulates in the nucleus where it enforces cellular responses, including cell cycle arrest and cell death. p53 is so dominant in its effects, that p53 enforcement - or - restoration therapy is being studied for anti-cancer therapy. Two mechanistically distinct small molecules that act via p53 are the selective inhibitor of nuclear export, selinexor, and MDM2 inhibitor, nutlin-3a. Here, individual cells are studied to define cell cycle response signatures, which captures the variability of responses and includes the impact of loss of p53 expression on cell fates. The individual responses are then used to build the population level response. Matched cell lines with and without p53 expression indicate that while loss-of-function results in altered cell cycle signatures to selinexor treatment, it does not diminish overall cell loss. On the contrary, response to single-agent nutlin-3a shows a strong p53-dependence. Upon treatment with both selinexor and nutlin-3a there are combination effects in at least some cell lines - even when p53 is absent. Collectively, the findings indicate that p53 does act downstream of selinexor and nutlin-3a, and that p53 expression is dispensable for selinexor to cause cell death, but nutlin-3a response is more p53-dependent. Thus, TP53 disruption and lack of expression may not predict poor cell response to selinexor, and selinexor's mechanism of action potentially provides for strong efficacy regardless of p53 function.


Assuntos
Apoptose , Ciclo Celular , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Humanos , Hidrazinas/farmacologia , Imidazóis/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Piperazinas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Triazóis/farmacologia , Proteína Exportina 1
6.
Clin Cancer Res ; 24(14): 3334-3347, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29636358

RESUMO

Purpose: Despite initial benefit from tyrosine kinase inhibitors (TKIs), patients with advanced non-small cell lung cancer (NSCLC) harboring ALK (ALK+) and ROS1 (ROS1+) gene fusions ultimately progress. Here, we report on the potential resistance mechanisms in a series of patients with ALK+ and ROS1+ NSCLC progressing on different types and/or lines of ROS1/ALK-targeted therapy.Experimental Design: We used a combination of next-generation sequencing (NGS), multiplex mutation assay, direct DNA sequencing, RT-PCR, and FISH to identify fusion variants/partners and copy-number gain (CNG), kinase domain mutations (KDM), and copy-number variations (CNVs) in other cancer-related genes. We performed testing on 12 ROS1+ and 43 ALK+ patients.Results: One of 12 ROS1+ (8%) and 15 of 43 (35%) ALK + patients harbored KDM. In the ROS1+ cohort, we identified KIT and ß-catenin mutations and HER2-mediated bypass signaling as non-ROS1-dominant resistance mechanisms. In the ALK+ cohort, we identified a novel NRG1 gene fusion, a RET fusion, 2 EGFR, and 3 KRAS mutations, as well as mutations in IDH1, RIT1, NOTCH, and NF1 In addition, we identified CNV in multiple proto-oncogenes genes including PDGFRA, KIT, KDR, GNAS, K/HRAS, RET, NTRK1, MAP2K1, and others.Conclusions: We identified a putative TKI resistance mechanism in six of 12 (50%) ROS1 + patients and 37 of 43 (86%) ALK+ patients. Our data suggest that a focus on KDMs will miss most resistance mechanisms; broader gene testing strategies and functional validation is warranted to devise new therapeutic strategies for drug resistance. Clin Cancer Res; 24(14); 3334-47. ©2018 AACR.


Assuntos
Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Adulto , Idoso , Quinase do Linfoma Anaplásico/química , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Terapia de Alvo Molecular , Mutação , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/química , Proteínas Proto-Oncogênicas/química , Relação Estrutura-Atividade , Adulto Jovem
7.
Mol Cancer Ther ; 16(8): 1623-1633, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28500237

RESUMO

Oncogenic rearrangements in RET are present in 1%-2% of lung adenocarcinoma patients. Ponatinib is a multi-kinase inhibitor with low-nanomolar potency against the RET kinase domain. Here, we demonstrate that ponatinib exhibits potent antiproliferative activity in RET fusion-positive LC-2/ad lung adenocarcinoma cells and inhibits phosphorylation of the RET fusion protein and signaling through ERK1/2 and AKT. Using distinct dose escalation strategies, two ponatinib-resistant LC-2/ad cell lines, PR1 and PR2, were derived. PR1 and PR2 cell lines retained expression, but not phosphorylation of the RET fusion and lacked evidence of a resistance mutation in the RET kinase domain. Both resistant lines retained activation of the MAPK pathway. Next-generation RNA sequencing revealed an oncogenic NRAS p.Q61K mutation in the PR1 cell. PR1 cell proliferation was preferentially sensitive to siRNA knockdown of NRAS compared with knockdown of RET, more sensitive to MEK inhibition than the parental line, and NRAS dependence was maintained in the absence of chronic RET inhibition. Expression of NRAS p.Q61K in RET fusion expressing TPC1 cells conferred resistance to ponatinib. PR2 cells exhibited increased expression of EGFR and AXL. EGFR inhibition decreased cell proliferation and phosphorylation of ERK1/2 and AKT in PR2 cells, but not LC-2/ad cells. Although AXL inhibition enhanced PR2 sensitivity to afatinib, it was unable to decrease cell proliferation by itself. Thus, EGFR and AXL cooperatively rescued signaling from RET inhibition in the PR2 cells. Collectively, these findings demonstrate that resistance to ponatinib in RET-rearranged lung adenocarcinoma is mediated by bypass signaling mechanisms that result in restored RAS/MAPK activation. Mol Cancer Ther; 16(8); 1623-33. ©2017 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , GTP Fosfo-Hidrolases/metabolismo , Rearranjo Gênico/genética , Imidazóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Piridazinas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mutação/genética , Oncogenes , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Piridazinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA