RESUMO
In many regions of Europe, large wild herbivores alter forest community composition through their foraging preferences, hinder the forest's natural adaptive responses to climate change, and reduce ecosystem resilience. We investigated a widespread European forest type, a mixed forest dominated by Picea abies, which has recently experienced an unprecedented level of disturbance across the continent. Using the forest landscape model iLand, we investigated the combined effect of climate change and herbivory on forest structure, composition, and carbon and identified conditions leading to ecosystem transitions on a 300-year timescale. Eight climate change scenarios, driven by Representative Concentration Pathways 4.5 and 8.5, combined with three levels of regeneration browsing, were tested. We found that the persistence of the current level of browsing pressure impedes adaptive changes in community composition and sustains the presence of the vulnerable yet less palatable P. abies. These development trajectories were tortuous, characterized by a high disturbance intensity. On the contrary, reduced herbivory initiated a transformation towards the naturally dominant broadleaved species that was associated with an increased forest carbon and a considerably reduced disturbance. The conditions of RCP4.5 combined with high and moderate browsing levels preserved the forest within its reference range of variability, defining the actual boundaries of resilience. The remaining combinations of browsing and climate change led to ecosystem transitions. Under RCP4.5 with browsing effects excluded, the new equilibrium conditions were achieved within 120 years, whereas the stabilization was delayed by 50-100 years under RCP8.5 with higher browsing intensities. We conclude that forests dominated by P. abies are prone to transitions driven by climate change. However, reducing herbivory can set the forest on a stable and predictable trajectory, whereas sustaining the current browsing levels can lead to heightened disturbance activity, extended transition times, and high variability in the target conditions.
Assuntos
Ecossistema , Herbivoria , Mudança Climática , Florestas , CarbonoRESUMO
Forest disturbance regimes are intensifying in many parts of the globe. In order to mitigate disturbance impacts a number of management responses have been proposed, yet their effectiveness in addressing changing disturbance regimes remains largely unknown. The strong positive relationship between forest age and the vulnerability to disturbances such as windthrows and bark beetle infestations suggests that a reduced rotation length can be a potent means for mitigating the impacts of natural disturbances. However, disturbance mitigation measures such as shortened rotation lengths (SRL) can also have undesired consequences on ecosystem services and biodiversity, which need to be considered in their application. Here, we used the process-based landscape and disturbance model iLand to investigate the effects of SRL on the vulnerability of a 16,000 ha forest landscape in Central Europe to wind and bark beetle disturbances. We experimentally reduced the current rotation length (between 100 and 115 years) by up to -40% in 10% increments, and studied effects on disturbance dynamics under current and future climate conditions over a 200-year simulation period. Simultaneously, we quantified the collateral effects of SRL on forest carbon stocks and indicators of biodiversity. Shortening the rotation length by 40% decreased disturbances by 14%. This effect was strongly diminished under future climate change, reducing the mitigating effect of shortened rotation to < 6%. Collateral effects were severe in the initial decades after implementation: Reducing the rotation length by 40% caused a spike in harvested timber volume (+ 92%), decreased total forest carbon storage by 6% and reduced the number of large trees on the landscape by 20%. The long-term effects of SRL were less pronounced. At the same time, SRL caused an increase in tree species diversity. Shortening rotation length can reduce the impact of wind and bark beetle disturbances, but the overall efficiency of the measure is limited and decreases under climate change. Given the potential for undesired collateral effects we conclude that a reduction of the rotation length is no panacea for managing increasing disturbances, and should be applied in combination with other management measures reducing risks and fostering resilience.
RESUMO
Windfelled Norway spruce (Picea abies) trees play a crucial role in triggering large-scale outbreaks of the European spruce bark beetle Ips typographus. Outbreak management therefore strives to remove windfelled trees to reduce the risk of outbreaks, a measure referred to as sanitation logging (SL). Although this practice has been traditionally applied, its efficiency in preventing outbreaks remains poorly understood. We used the landscape simulation model iLand to investigate the effects of different spatial configurations and intensities of SL of windfelled trees on the subsequent disturbance by bark beetles. We studied differences between SL applied evenly across the landscape, focused on the vicinity of roads (scenario of limited logging resources) and concentrated in a contiguous block (scenario of spatially diversified management objectives). We focused on a 16â¯050â¯ha forest landscape in Central Europe. The removal of >80% of all windfelled trees is required to substantially reduce bark beetle disturbances. Focusing SL on the vicinity of roads created a "fire break effect" on bark beetle spread, and was moderately efficient in reducing landscape-scale bark beetle disturbance. Block treatments substantially reduced outbreaks in treated areas. Leaving parts of the landscape untreated (e.g., conservation areas) had no significant amplifying effect on outbreaks in managed areas. Climate change increased bark beetle disturbances and reduced the effect of SL. Our results suggest that past outbreak management methods will not be sufficient to counteract climate-mediated increases in bark beetle disturbance.
Assuntos
Besouros , Árvores , Animais , Europa (Continente) , Florestas , Noruega , Casca de PlantaRESUMO
Disturbances alter composition, structure, and functioning of forest ecosystems, and their legacies persist for decades to centuries. We investigated how temperate forest landscapes may recover their carbon (C) after severe wind and bark beetle disturbance, while being exposed to climate change. We used the forest landscape and disturbance model iLand to quantify (i) the recovery times of the total ecosystem C, (ii) the effect of climate change on C recovery, and (iii) the differential factors contributing to C recovery. We reconstructed a recent disturbance episode (2008-2016) based on Landsat satellite imagery, which affected 39% of the forest area in the 16,000 ha study landscape. We subsequently simulated forest recovery under a continuation of business-asusual management until 2100. Our results indicated that the recovery of the pre-disturbance C stocks (C payback time) was reached 17 years after the end of the disturbance episode. The C stocks of a theoretical undisturbed development trajectory were reached 30 years after the disturbance episode (C sequestration parity). Drier and warmer climates delayed simulated C recovery. Without the fertilizing effect of CO2, C payback times were delayed by 5-9 years, while C parity was not reached within the 21st century. Recovery was accelerated by an enhanced C uptake compared to undisturbed conditions (disturbance legacy sink effect) that persisted for 35 years after the disturbance episode. Future climate could have negative impacts on forest recovery and thus further amplify climate change through C loss from ecosystems, but the effect is strongly contingent on the magnitude and persistence of alleviating CO2 effects. Our modelling study highlights the need to consider both negative and positive effects of disturbance (i.e., C loss immediately after an event vs. enhanced C uptake of the recovering forest) in order to obtain a comprehensive understanding of disturbance effects on the forest C cycle.
RESUMO
BACKGROUND: Making forecasts about biodiversity and giving support to policy relies increasingly on large collections of data held electronically, and on substantial computational capability and capacity to analyse, model, simulate and predict using such data. However, the physically distributed nature of data resources and of expertise in advanced analytical tools creates many challenges for the modern scientist. Across the wider biological sciences, presenting such capabilities on the Internet (as "Web services") and using scientific workflow systems to compose them for particular tasks is a practical way to carry out robust "in silico" science. However, use of this approach in biodiversity science and ecology has thus far been quite limited. RESULTS: BioVeL is a virtual laboratory for data analysis and modelling in biodiversity science and ecology, freely accessible via the Internet. BioVeL includes functions for accessing and analysing data through curated Web services; for performing complex in silico analysis through exposure of R programs, workflows, and batch processing functions; for on-line collaboration through sharing of workflows and workflow runs; for experiment documentation through reproducibility and repeatability; and for computational support via seamless connections to supporting computing infrastructures. We developed and improved more than 60 Web services with significant potential in many different kinds of data analysis and modelling tasks. We composed reusable workflows using these Web services, also incorporating R programs. Deploying these tools into an easy-to-use and accessible 'virtual laboratory', free via the Internet, we applied the workflows in several diverse case studies. We opened the virtual laboratory for public use and through a programme of external engagement we actively encouraged scientists and third party application and tool developers to try out the services and contribute to the activity. CONCLUSIONS: Our work shows we can deliver an operational, scalable and flexible Internet-based virtual laboratory to meet new demands for data processing and analysis in biodiversity science and ecology. In particular, we have successfully integrated existing and popular tools and practices from different scientific disciplines to be used in biodiversity and ecological research.
Assuntos
Biodiversidade , Ecologia/métodos , Ecologia/instrumentação , Internet , Modelos Biológicos , Software , Fluxo de TrabalhoRESUMO
Understanding the impacts of changing climate and disturbance regimes on forest ecosystems is greatly aided by the use of process-based models. Such models simulate processes based on first principles of ecology, which requires parameterization. Parameterization is an important step in model development and application, defining the characteristics of trees and their responses to the environment, i.e., their traits. For species-specific models, parameterization is usually done at the level of individual species. Parameterization is indispensable for accurately modeling demographic processes, including growth, mortality, and regeneration of trees, along with their intra- and inter-specific interactions. As it is time-demanding to compile the parameters required to simulate forest ecosystems in complex models, simulations are often restricted to the most common tree species, genera, or plant-functional types. Yet, as tree species composition might change in the future, it is important to account for a broad range of species and their individual responses to drivers of change explicitly in simulations. Thus, species-specific parameterization is a critical task for making accurate projections about future forest trajectories, yet species parameters often remain poorly documented in simulation studies. We compiled and harmonized all existing tree species parameters available for the individual-based forest landscape and disturbance model (iLand). Since its first publication in 2012, iLand has been applied in 50 peer-reviewed publications across three continents throughout the Northern Hemisphere (i.e., Europe, North America, and Asia). The model operates at individual-tree level and simulates ecosystem processes at multiple spatial scales, making it a capable process-based model for studying forest change. However, the extensive number of processes and their interactions as well as the wide range of spatio-temporal scales considered in iLand require intensive parameterization, with tree species characterized by 66 unique parameters in the model. The database presented here includes parameters for 150 temperate and boreal tree species and provenances (i.e., regional variations). Excluding missing values, the database includes a total of 9,249 individual parameter entries. In addition, we provide parameters for the individual susceptibility of tree species to wind disturbance (five parameters) for a subset of 104 tree species and provenances (498 parameter entries). To guide further model parameterization efforts, we provide an estimate of uncertainty for each species based on how thoroughly simulations with the respective parameters were evaluated against independent data. Our dataset aids the future parameterization and application of iLand, and sets a new standard in documenting parameters used in process-based forest simulations. This dataset will support model application in previously unstudied areas and can facilitate the investigation of new tree species being introduced to well-studied systems (e.g., simulating assisted migration in the context of rapid climate change). Given that many process-based models rely on similar underlying processes our harmonized parameter set will be of relevance beyond the iLand community. Our work could catalyze further research into improving the parameterization of process-based forest models, increasing the robustness of projections of climate change impacts and adaptation strategies.
RESUMO
Process-based forest models combine biological, physical, and chemical process understanding to simulate forest dynamics as an emergent property of the system. As such, they are valuable tools to investigate the effects of climate change on forest ecosystems. Specifically, they allow testing of hypotheses regarding long-term ecosystem dynamics and provide means to assess the impacts of climate scenarios on future forest development. As a consequence, numerous local-scale simulation studies have been conducted over the past decades to assess the impacts of climate change on forests. These studies apply the best available models tailored to local conditions, parameterized and evaluated by local experts. However, this treasure trove of knowledge on climate change responses remains underexplored to date, as a consistent and harmonized dataset of local model simulations is missing. Here, our objectives were (i) to compile existing local simulations on forest development under climate change in Europe in a common database, (ii) to harmonize them to a common suite of output variables, and (iii) to provide a standardized vector of auxiliary environmental variables for each simulated location to aid subsequent investigations. Our dataset of European stand- and landscape-level forest simulations contains over 1.1 million simulation runs representing 135 million simulation years for more than 13,000 unique locations spread across Europe. The data were harmonized to consistently describe forest development in terms of stand structure (dominant height), composition (dominant species, admixed species), and functioning (leaf area index). Auxiliary variables provided include consistent daily climate information (temperature, precipitation, radiation, vapor pressure deficit) as well as information on local site conditions (soil depth, soil physical properties, soil water holding capacity, plant-available nitrogen). The present dataset facilitates analyses across models and locations, with the aim to better harness the valuable information contained in local simulations for large-scale policy support, and for fostering a deeper understanding of the effects of climate change on forest ecosystems in Europe.
RESUMO
Process-based models and empirical modelling techniques are frequently used to (i) explore the sensitivity of tree growth to environmental variables, and (ii) predict the future growth of trees and forest stands under climate change scenarios. However, modelling approaches substantially influence predictions of the sensitivity of trees to environmental factors. Here, we used tree-ring width (TRW) data from 1630 beech trees from a network of 70 plots established across European mountains to build empirical predictive growth models using various modelling approaches. In addition, we used 3-PG and Biome-BGCMuSo process-based models to compare growth predictions with derived empirical models. Results revealed similar prediction errors (RMSE) across models ranging between 3.71 and 7.54 cm2 of basal area increment (BAI). The models explained most of the variability in BAI ranging from 54 % to 87 %. Selected explanatory variables (despite being statistically highly significant) and the pattern of the growth sensitivity differed between models substantially. We identified only five factors with the same effect and the same sensitivity pattern in all empirical models: tree DBH, competition index, elevation, Gini index of DBH, and soil silt content. However, the sensitivity to most of the climate variables was low and inconsistent among the empirical models. Both empirical and process-based models suggest that beech in European mountains will, on average, likely experience better growth conditions under both 4.5 and 8.5 RCP scenarios. The process-based models indicated that beech may grow better across European mountains by 1.05 to 1.4 times in warmer conditions. The empirical models identified several drivers of tree growth that are not included in the current process-based models (e.g., different nutrients) but may have a substantial effect on final results, particularly if they are limiting factors. Hence, future development of process-based models may build upon our findings to increase their ability to correctly capture ecosystem dynamics.
Assuntos
Ecossistema , Fagus , Mudança Climática , Florestas , ÁrvoresRESUMO
In southern Africa, woody vegetation provides essential ecological, regulation, and cultural ecosystem services (ES), yet many species and ecosystems are increasingly threatened by climate change and land-use transformations. We investigated the effect of climate change on the distribution of eight species in 18 countries in southern Africa, covering 36% of the continent. We proposed a loser/winner ranking of the species based on the changes in land climatic suitability within their historical distribution and future gains and losses of suitable areas. We interpreted these findings in terms of changes in key ES (timber, food, and energy) provision and identified hotspots of ES provision decline. We used species presence data from the Global Biodiversity Information Facility, climatic data from the AfriClim dataset, and the MaxEnt algorithm to project the changes in species-specific land climatic suitability. Among the eight investigated species, the baseline suitability range of Mopane (Colophosperm mopane) was least affected by climate change. At the same time, the area of its future distribution was projected to double, rendering it a regional winner. Another two species, manketti (Schinziophyton rautanenii) and leadwood (Combretum imberbe) showed high future gains too; however, the impact on their baseline suitability range differed between the climatic scenarios. The baseline range of African rosewood (Guibourtia coleosperma) declined entirely, and the future gains were negligible, rendering the species a regional loser. The effect of climate change was particularly severe on timber-producing species (four out of eight species), while species providing food (four species) and energy (four species) were affected less. Our projections portrayed distinct hotspot and coldspot areas, where climatic suitability for multiple species was concurrently projected to decline or persist. This assessment can inform spatially targeted adaptation and conservation actions and strategies, which are currently lacking in many African regions.
Assuntos
Mudança Climática , Ecossistema , Aclimatação , África Austral , BiodiversidadeRESUMO
Present-day disturbances are transforming European forest landscapes, and their legacies determine the vulnerability and resilience of the emergent forest generation. To understand these legacy effects, we investigated the resilience of the aboveground forest biomass (Babg) to a sequence of disturbances affecting the forest in different recovery phases from the initial large-scale impact. We used the model iLand to simulate windthrows that affected 13-24% of the Babg in a Central European forest landscape. An additional wind event was simulated 20, 40, 60, or 80 years after the initial impact (i.e., sequences of two windthrows were defined). Each windthrow triggered an outbreak of bark beetles that interacted with the recovery processes. We evaluated the resistance of the Babg to and recovery after the impact. Random Forest models were used to identify factors influencing resilience. We found that Babg resistance was the lowest 20 years after the initial impact when the increased proportion of emergent wind-exposed forest edges prevailed the disturbance-dampening effect of reduced biomass levels and increased landscape heterogeneity. This forest had a remarkably high recovery rate and reached the pre-disturbance Babg within 28 years. The forest exhibited a higher resistance and a slower recovery rate in the more advanced recovery phases, reaching the pre-disturbance Babg within 60-80 years. The recovery was enhanced by higher levels of alpha and beta diversity. Under elevated air temperature, the bark beetle outbreak triggered by windthrow delayed the recovery. However, the positive effect of increased temperature on forest productivity caused the recovery rate to be higher under the warming scenario than under the reference climate. We conclude that resilience is not a static property, but its magnitude and drivers vary in time, depending on vegetation feedbacks, interactions between disturbances, and climate. Understanding these mechanisms is an essential step towards the operationalization of resilience-oriented stewardship.
Assuntos
Mudança Climática , Besouros , Florestas , Animais , Biomassa , Besouros/crescimento & desenvolvimento , Europa (Continente) , VentoRESUMO
Climate change is a major threat to global biodiversity, although projected changes show remarkable geographical and temporal variability. Understanding this variability allows for the identification of regions where the present-day conservation objectives may be at risk or where opportunities for biodiversity conservation emerge. We use a multi-model ensemble of regional climate models to identify areas with significantly high and low climate stability persistent throughout the twenty-first century in Europe. We then confront our predictions with the land coverage of three prominent biodiversity conservation initiatives at two scales. The continental-scale assessment shows that areas with the least stable future climate in Europe are likely to occur at low and high latitudes, with the Iberian Peninsula and the Boreal zones identified as prominent areas of low climatic stability. A follow-up regional scale investigation shows that robust climatic refugia exist even within the highly exposed southern and northern macro-regions. About 23-31% of assessed biodiversity conservation sites in Europe coincide with areas of high future climate stability, we contend that these sites should be prioritised in the formulation of future conservation priorities as the stability of future climate is one of the key factors determining their conservation prospects. Although such focus on climate refugia cannot halt the ongoing biodiversity loss, along with measures such as resilience-based stewardship, it may improve the effectiveness of biodiversity conservation under climate change.
RESUMO
Covering large parts of Europe, Norway spruce (Picea abies L Karst.) plays an important role in the adaptation strategy of forest services to future climate change. Although dendroecology can provide valuable information on the past relationships between tree growth and climate, most previous studies were biased towards species-specific distribution limits, where old individuals grow slowly under extreme conditions. In the present study, we investigated the growth variability and climate sensitivity of 2851 Norway spruce trees along longitudinal (E 12-26°), latitudinal (N 45-51°), and elevation (118-1591 m a.s.l.) gradients in central-eastern Europe. We reveal that summer weather significantly affects the radial growth of spruce trees, but the effects strongly vary along biogeographical gradients. Extreme summer heatwaves in 2000 and 2003 reduced the growth rates by 10-35%, most pronounced in the southern Carpathians. In contrast to the population in the Czech Republic, climate warming induced a synchronous decline in the growth rates across biogeographical gradients in the Carpathian arc. By demonstrating the increased vulnerability of Norway spruce under warmer climate conditions, we recommended that the forest services and conservation managers replace or admix monocultures of this species with more drought-resilient mixtures including fir, beech and other broadleaved species.
Assuntos
Picea , Mudança Climática , República Tcheca , Europa (Continente) , Europa Oriental , Humanos , Noruega , ÁrvoresRESUMO
Wind and bark beetle disturbances have increased in recent decades, affecting Europe's coniferous forests with particular severity. Management fostering forest diversity and resilience is deemed to effectively mitigate disturbance impacts, yet its efficiency and interaction with other disturbance management measures remain unclear.We focused on Central Europe, which has become one of the hotspots of recent disturbance changes. We used the iLand ecosystem model to understand the interplay between species composition of the forest, forest disturbance dynamics affected by climate change, and disturbance management. The tested measures included (a) active transformation of tree species composition toward site-matching species; (b) intensive removal of windfelled trees, which can support the buildup of bark beetle populations; and (c) reduction of mature and vulnerable trees on the landscape via modified harvesting regimes.We found that management systems aiming to sustain the dominance of Norway spruce in the forest are failing under climate change, and none of the measures applied could mitigate the disturbance impacts. Conversely, management systems fostering forest diversity substantially reduced the level of disturbance. Significant disturbance reduction has been achieved even without salvaging and rotation length reduction, which is beneficial for ecosystem recovery, carbon, and biodiversity. Synthesis and applications: We conclude that climate change amplifies the contrast in vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance. Whereas forests dominated by Norway spruce are not likely to be sustained in Central Europe under climate change, different management strategies can be applied in species-diverse forests to reach the desired control over the disturbance dynamic. Our findings justify some unrealistic expectations about the options to control disturbance dynamics under climate change and highlight the importance of management that fosters forest diversity.