Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 30(3): 1119-1134, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998954

RESUMO

Neuroblastoma is a deadly childhood cancer arising in the developing sympathetic nervous system. High-risk patients are currently treated with intensive chemotherapy, which is curative in only 50% of children and leaves some surviving patients with life-long side effects. microRNAs (miRNAs) are critical regulators of neural crest development and are deregulated during neuroblastoma tumorigenesis, making miRNA-based drugs an attractive therapeutic avenue. A functional screen of >1,200 miRNA mimics was conducted in neuroblastoma cell lines to discover miRNAs that sensitized cells to low doses (30% inhibitory concentration [IC30]) of doxorubicin and vincristine chemotherapy used in the treatment of the disease. Three miRNAs, miR-99b-5p, miR-380-3p, and miR-485-3p, had potent chemosensitizing activity with doxorubicin in multiple models of high-risk neuroblastoma. These miRNAs underwent genomic loss in a subset of neuroblastoma patients, and low expression predicted poor survival outcome. In vitro functional assays revealed each of these miRNAs enhanced the anti-proliferative and pro-apoptotic effects of doxorubicin. We used RNA sequencing (RNA-seq) to show that miR-99b-5p represses neuroblastoma dependency genes LIN28B and PHOX2B both in vitro and in patient-derived xenograft (PDX) tumors. Luciferase reporter assays demonstrate that PHOX2B is a direct target of miR-99b-5p. We anticipate that restoring the function of the tumor-suppressive miRNAs discovered here may be a valuable therapeutic strategy for the treatment of neuroblastoma patients.


Assuntos
MicroRNAs , Neuroblastoma , Criança , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética
2.
Breast Cancer Res ; 22(1): 63, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527287

RESUMO

BACKGROUND: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS: These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS: These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Animais , Apoptose/fisiologia , Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Proteogenômica , Células Tumorais Cultivadas
4.
Nucleic Acids Res ; 45(22): 12657-12670, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29156009

RESUMO

Micro-RNAs (miRNAs) are potent regulators of gene expression and cellular phenotype. Each miRNA has the potential to target hundreds of transcripts within the cell thus controlling fundamental cellular processes such as survival and proliferation. Here, we exploit this important feature of miRNA networks to discover vulnerabilities in cancer phenotype, and map miRNA-target relationships across different cancer types. More specifically, we report the results of a functional genomics screen of 1280 miRNA mimics and inhibitors in eight cancer cell lines, and its presentation in a sophisticated interactive data portal. This resource represents the most comprehensive survey of miRNA function in oncology, incorporating breast cancer, prostate cancer and neuroblastoma. A user-friendly web portal couples this experimental data with multiple tools for miRNA target prediction, pathway enrichment analysis and visualization. In addition, the database integrates publicly available gene expression and perturbation data enabling tailored and context-specific analysis of miRNA function in a particular disease. As a proof-of-principle, we use the database and its innovative features to uncover novel determinants of the neuroblastoma malignant phenotype.


Assuntos
Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , MicroRNAs/genética , Neoplasias/genética , Linhagem Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Bases de Dados de Ácidos Nucleicos , Redes Reguladoras de Genes , Humanos , MicroRNAs/classificação , Neoplasias/patologia
5.
Biomolecules ; 10(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911668

RESUMO

The basic helix-loop-helix (bHLH) transcription factors inhibitor of differentiation 1 (Id1) and inhibitor of differentiation 3 (Id3) (referred to as Id) have an important role in maintaining the cancer stem cell (CSC) phenotype in the triple-negative breast cancer (TNBC) subtype. In this study, we aimed to understand the molecular mechanism underlying Id control of CSC phenotype and exploit it for therapeutic purposes. We used two different TNBC tumor models marked by either Id depletion or Id1 expression in order to identify Id targets using a combinatorial analysis of RNA sequencing and microarray data. Phenotypically, Id protein depletion leads to cell cycle arrest in the G0/G1 phase, which we demonstrate is reversible. In order to understand the molecular underpinning of Id proteins on the cell cycle phenotype, we carried out a large-scale small interfering RNA (siRNA) screen of 61 putative targets identified by using genomic analysis of two Id TNBC tumor models. Kinesin Family Member 11 (Kif11) and Aurora Kinase A (Aurka), which are critical cell cycle regulators, were further validated as Id targets. Interestingly, unlike in Id depletion conditions, Kif11 and Aurka knockdown leads to a G2/M arrest, suggesting a novel Id cell cycle mechanism, which we will explore in further studies. Therapeutic targeting of Kif11 to block the Id1-Kif11 axis was carried out using small molecular inhibitor ispinesib. We finally leveraged our findings to target the Id/Kif11 pathway using the small molecule inhibitor ispinesib in the Id+ CSC results combined with chemotherapy for better response in TNBC subtypes. This work opens up exciting new possibilities of targeting Id targets such as Kif11 in the TNBC subtype, which is currently refractory to chemotherapy. Targeting the Id1-Kif11 molecular pathway in the Id1+ CSCs in combination with chemotherapy and small molecular inhibitor results in more effective debulking of TNBC.


Assuntos
Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo , Cinesinas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Benzamidas/farmacologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Paclitaxel/farmacologia , Quinazolinas/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
6.
Sci Rep ; 8(1): 7820, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777112

RESUMO

Docetaxel and cabazitaxel are taxane chemotherapy treatments for metastatic castration-resistant prostate cancer (CRPC). However, therapeutic resistance remains a major issue. MicroRNAs are short non-coding RNAs that can silence multiple genes, regulating several signalling pathways simultaneously. Therefore, synthetic microRNAs may have therapeutic potential in CRPC by regulating genes involved in taxane response and minimise compensatory mechanisms that cause taxane resistance. To identify microRNAs that can improve the efficacy of taxanes in CRPC, we performed a genome-wide screen of 1280 microRNAs in the CRPC cell lines PC3 and DU145 in combination with docetaxel or cabazitaxel treatment. Mimics of miR-217 and miR-181b-5p enhanced apoptosis significantly in PC3 cells in the presence of these taxanes. These mimics downregulated at least a thousand different transcripts, which were enriched for genes with cell proliferation and focal adhesion functions. Individual knockdown of a selection of 46 genes representing these transcripts resulted in toxic or taxane sensitisation effects, indicating that these genes may be mediating the effects of the microRNA mimics. A range of these genes are expressed in CRPC metastases, suggesting that these microRNA mimics may be functional in CRPC. With further development, these microRNA mimics may have therapeutic potential to improve taxane response in CRPC patients.


Assuntos
Materiais Biomiméticos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/genética , Taxoides/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/farmacologia , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , MicroRNAs/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
7.
Sci Rep ; 4: 7170, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25417648

RESUMO

The origins of domesticated sheep (Ovis sp.) in China remain unknown. Previous workers have speculated that sheep may have been present in China up to 7000 years ago, however many claims are based on associations with archaeological material rather than independent dates on sheep material. Here we present 7 radiocarbon dates on sheep bone from Inner Mongolia, Ningxia and Shaanxi provinces. DNA analysis on one of the bones confirms it is Ovis sp. The oldest ages are about 4700 to 4400 BCE and are thus the oldest objectively dated Ovis material in eastern Asia. The graphitisised bone collagen had δ(13)C values indicating some millet was represented in the diet. This probably indicates sheep were in a domestic setting where millet was grown. The younger samples had δ(13)C values indicating that even more millet was in the diet, and this was likely related to changes in foddering practices.


Assuntos
Fósseis , Datação Radiométrica , Ovinos , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Isótopos de Carbono/análise , China , Colágeno/química , DNA/química , Dieta
8.
Brain Pathol ; 24(6): 631-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25345894

RESUMO

The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of "neuroinflammation" indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the "translocation" function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of "neuroinflammation."


Assuntos
Microglia/metabolismo , Receptores de GABA/metabolismo , Animais , Encéfalo/imunologia , Humanos , Inflamação/metabolismo , Neuroimunomodulação/fisiologia , Receptores de GABA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA