Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mutat ; 39(7): 970-982, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29664219

RESUMO

Myotonic dystrophy type 1 (DM1) is a dominant multisystemic disorder associated with high variability of symptoms and anticipation. DM1 is caused by an unstable CTG repeat expansion that usually increases in successive generations and tissues. DM1 family pedigrees have shown that ∼90% and 10% of transmissions result in expansions and contractions of the CTG repeat, respectively. To date, the mechanisms of CTG repeat contraction remain poorly documented in DM1. In this report, we identified two new DM1 families with apparent contractions and no worsening of DM1 symptoms in two and three successive maternal transmissions. A new and unique CAG interruption was found in 5' of the CTG expansion in one family, whereas multiple 5' CCG interruptions were detected in the second family. We showed that these interruptions are associated with maternal intergenerational contractions and low somatic mosaicism in blood. By specific triplet-prime PCR, we observed that CTG repeat changes (contractions/expansions) occur preferentially in 3' of the interruptions for both families.


Assuntos
Predisposição Genética para Doença , Mosaicismo , Distrofia Miotônica/genética , Expansão das Repetições de Trinucleotídeos/genética , Alelos , Feminino , Humanos , Masculino , Distrofia Miotônica/fisiopatologia , Miotonina Proteína Quinase/genética , Linhagem
2.
PLoS Genet ; 8(11): e1003043, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209425

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by an unstable CTG repeat expansion in the 3'UTR of the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated transcripts have been described in DM1. It is clear now that this disease may involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro-RNA metabolism. We previously generated transgenic mice with 45-kb of the DM1 locus and >300 CTG repeats (DM300 mice). After successive breeding and a high level of CTG repeat instability, we obtained transgenic mice carrying >1,000 CTG (DMSXL mice). Here we described for the first time the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. Interestingly, we also demonstrate that DMPK antisense transcripts are expressed in various DMSXL and human tissues, and that both sense and antisense transcripts accumulate in independent nuclear foci that do not co-localize together. Molecular features of DM1-associated RNA toxicity in DMSXL mice (such as foci accumulation and mild missplicing), were associated with high mortality, growth retardation, and muscle defects (abnormal histopathology, reduced muscle strength, and lower motor performances). We have found that lower levels of IGFBP-3 may contribute to DMSXL growth retardation, while increased proteasome activity may affect muscle function. These data demonstrate that the human DM1 locus carrying very large expansions induced a variety of molecular and physiological defects in transgenic mice, reflecting DM1 to a certain extent. As a result, DMSXL mice provide an animal tool to decipher various aspects of the disease mechanisms. In addition, these mice can be used to test the preclinical impact of systemic therapeutic strategies on molecular and physiological phenotypes.


Assuntos
Músculo Esquelético , Distrofia Miotônica , Proteínas Serina-Treonina Quinases/genética , Animais , Núcleo Celular/metabolismo , Endopeptidases/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiopatologia , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , Miotonina Proteína Quinase , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , Expansão das Repetições de Trinucleotídeos/genética
3.
Brain ; 136(Pt 3): 957-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404338

RESUMO

Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology.


Assuntos
Comportamento Animal/fisiologia , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Adulto , Idoso , Animais , Western Blotting , Eletroforese em Gel Bidimensional , Eletrofisiologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Distrofia Miotônica/complicações , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Expansão das Repetições de Trinucleotídeos
4.
Orphanet J Rare Dis ; 14(1): 122, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159885

RESUMO

BACKGROUND: The relevance of registries as a key component for developing clinical research for rare diseases (RD) and improving patient care has been acknowledged by most stakeholders. As recent studies pointed to several limitations of RD registries our challenge was (1) to improve standardization and data comparability; (2) to facilitate interoperability between existing RD registries; (3) to limit the amount of incomplete data; (4) to improve data quality. This report describes the innovative concept of the DM-Scope Registry that was developed to achieve these objectives for Myotonic Dystrophy (DM), a prototypical example of highly heterogeneous RD. By the setting up of an integrated platform attractive for practitioners use, we aimed to promote DM epidemiology, clinical research and patients care management simultaneously. RESULTS: The DM-Scope Registry is a result of the collaboration within the French excellence network established by the National plan for RDs. Inclusion criteria is all genetically confirmed DM individuals, independently of disease age of onset. The dataset includes social-demographic data, clinical features, genotype, and biomaterial data, and is adjustable for clinical trial data collection. To date, the registry has a nationwide coverage, composed of 55 neuromuscular centres, encompassing the whole disease clinical and genetic spectrum. This widely used platform gathers almost 3000 DM patients (DM1 n = 2828, DM2 n = 142), both children (n = 322) and adults (n = 2648), which accounts for > 20% of overall registered DM patients internationally. The registry supported 10 research studies of various type i.e. observational, basic science studies and patient recruitment for clinical trials. CONCLUSION: The DM-Scope registry represents the largest collection of standardized data for the DM population. Our concept improved collaboration among health care professionals by providing annual follow-up of quality longitudinal data collection. The combination of clinical features and biomolecular materials provides a comprehensive view of the disease in a given population. DM-Scope registry proves to be a powerful device for promoting both research and medical care that is suitable to other countries. In the context of emerging therapies, such integrated platform contributes to the standardisation of international DM research and for the design of multicentre clinical trials. Finally, this valuable model is applicable to other RDs.


Assuntos
Doenças Raras , Sistema de Registros , Pesquisa Biomédica , Bases de Dados Factuais , Humanos , Distrofia Miotônica
6.
Neurology ; 92(8): e852-e865, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30659139

RESUMO

OBJECTIVE: To genotypically and phenotypically characterize a large pediatric myotonic dystrophy type 1 (DM1) cohort to provide a solid frame of data for future evidence-based health management. METHODS: Among the 2,697 patients with genetically confirmed DM1 included in the French DM-Scope registry, children were enrolled between January 2010 and February 2016 from 24 centers. Comprehensive cross-sectional analysis of most relevant qualitative and quantitative variables was performed. RESULTS: We studied 314 children (52% females, with 55% congenital, 31% infantile, 14% juvenile form). The age at inclusion was inversely correlated with the CTG repeat length. The paternal transmission rate was higher than expected, especially in the congenital form (13%). A continuum of highly prevalent neurodevelopmental alterations was observed, including cognitive slowing (83%), attention deficit (64%), written language (64%), and spoken language (63%) disorders. Five percent exhibited autism spectrum disorders. Overall, musculoskeletal impairment was mild. Despite low prevalence, cardiorespiratory impairment could be life-threatening, and frequently occurred early in the first decade (25.9%). Gastrointestinal symptoms (27%) and cataracts (7%) were more frequent than expected, while endocrine or metabolic disorders were scarce. CONCLUSIONS: The pedDM-Scope study details the main genotype and phenotype characteristics of the 3 DM1 pediatric subgroups. It highlights striking profiles that could be useful in health care management (including transition into adulthood) and health policy planning.


Assuntos
Arritmias Cardíacas/fisiopatologia , Debilidade Muscular/fisiopatologia , Distrofia Miotônica/fisiopatologia , Insuficiência Respiratória/fisiopatologia , Adolescente , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/etiologia , Criança , Pré-Escolar , Medicina Baseada em Evidências , Feminino , Deformidades do Pé/epidemiologia , Deformidades do Pé/etiologia , França/epidemiologia , Humanos , Lactente , Recém-Nascido , Masculino , Debilidade Muscular/epidemiologia , Debilidade Muscular/etiologia , Distrofia Miotônica/complicações , Distrofia Miotônica/epidemiologia , Distrofia Miotônica/genética , Sistema de Registros , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/etiologia , Índice de Gravidade de Doença , Expansão das Repetições de Trinucleotídeos
7.
Biochim Biophys Acta ; 1772(11-12): 1183-91, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17950578

RESUMO

Myotonic dystrophy (DM1) is a dominant autosomal multisystemic disorder caused by the expansion of an unstable CTG trinucleotide repeat in the 3' untranslated region of the DMPK gene. Nuclear accumulation of the enlarged CUG-containing DMPK transcripts has a deleterious effect on the regulation of alternative splicing of some RNAs and has a central role in causing the symptoms of DM1. In particular, Insulin Receptor (IR) mRNA splicing defects have been observed in the muscle of DM1 patients. In this study, we have investigated IR splicing in insulin-responsive tissues (i.e. skeletal muscles, adipose tissue, liver) and pancreas and we have studied glucose metabolism in mice carrying the human genomic DM1 region with expanded (>350 CTG) or normal (20 CTG) repeats and in wild-type mice. Mice carrying DM1 expansions displayed a tissue- and age-dependent abnormal regulation of IR mRNA splicing in all the tissues that we investigated. Furthermore, these mice showed a basal hyperglycemia and glucose intolerance which disappeared with age. Our findings show that deregulation of IR splicing due to the DM1 mutation can occur in different mouse tissues, suggesting that CTG repeat expansions might also result in IR misplicing not only in muscles but also in other tissues in DM1 patients.


Assuntos
Distrofia Miotônica/genética , Receptor de Insulina/genética , Expansão das Repetições de Trinucleotídeos/genética , Envelhecimento , Processamento Alternativo/genética , Animais , Perfilação da Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Hipotálamo/metabolismo , Insulina/metabolismo , Secreção de Insulina , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Miotonina Proteína Quinase , Especificidade de Órgãos , Pâncreas/enzimologia , Pâncreas/patologia , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Transgenes
8.
Orphanet J Rare Dis ; 13(1): 155, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185236

RESUMO

BACKGROUND: Myotonic Dystrophy is the most common form of muscular dystrophy in adults, affecting an estimated 10 per 100,000 people. It is a multisystemic disorder affecting multiple generations with increasing severity. There are currently no licenced therapies to reverse, slow down or cure its symptoms. In 2009 TREAT-NMD (a global alliance with the mission of improving trial readiness for neuromuscular diseases) and the Marigold Foundation held a workshop of key opinion leaders to agree a minimal dataset for patient registries in myotonic dystrophy. Eight years after this workshop, we surveyed 22 registries collecting information on myotonic dystrophy patients to assess the proliferation and utility the dataset agreed in 2009. These registries represent over 10,000 myotonic dystrophy patients worldwide (Europe, North America, Asia and Oceania). RESULTS: The registries use a variety of data collection methods (e.g. online patient surveys or clinician led) and have a variety of budgets (from being run by volunteers to annual budgets over €200,000). All registries collect at least some of the originally agreed data items, and a number of additional items have been suggested in particular items on cognitive impact. CONCLUSIONS: The community should consider how to maximise this collective resource in future therapeutic programmes.


Assuntos
Distrofia Miotônica , Doenças Raras , Sistema de Registros , Ensaios Clínicos como Assunto , Educação , Humanos
9.
PLoS One ; 11(2): e0148264, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26849574

RESUMO

BACKGROUND: Myotonic Dystrophy type 1 (DM1) is one of the most heterogeneous hereditary disease in terms of age of onset, clinical manifestations, and severity, challenging both medical management and clinical trials. The CTG expansion size is the main factor determining the age of onset although no factor can finely predict phenotype and prognosis. Differences between males and females have not been specifically reported. Our aim is to study gender impact on DM1 phenotype and severity. METHODS: We first performed cross-sectional analysis of main multiorgan clinical parameters in 1409 adult DM1 patients (>18 y) from the DM-Scope nationwide registry and observed different patterns in males and females. Then, we assessed gender impact on social and economic domains using the AFM-Téléthon DM1 survey (n = 970), and morbidity and mortality using the French National Health Service Database (n = 3301). RESULTS: Men more frequently had (1) severe muscular disability with marked myotonia, muscle weakness, cardiac, and respiratory involvement; (2) developmental abnormalities with facial dysmorphism and cognitive impairment inferred from low educational levels and work in specialized environments; and (3) lonely life. Alternatively, women more frequently had cataracts, dysphagia, digestive tract dysfunction, incontinence, thyroid disorder and obesity. Most differences were out of proportion to those observed in the general population. Compared to women, males were more affected in their social and economic life. In addition, they were more frequently hospitalized for cardiac problems, and had a higher mortality rate. CONCLUSION: Gender is a previously unrecognized factor influencing DM1 clinical profile and severity of the disease, with worse socio-economic consequences of the disease and higher morbidity and mortality in males. Gender should be considered in the design of both stratified medical management and clinical trials.


Assuntos
Bases de Dados Factuais , Distrofia Miotônica/epidemiologia , Fenótipo , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Distrofia Miotônica/mortalidade , Distribuição por Sexo , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA