Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 22(8): 3205-3217, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32383332

RESUMO

Members of the family Vibrionaceae are generally found in marine and brackish environments, playing important roles in nutrient cycling. The Rumoiensis clade is an unconventional group in the genus Vibrio, currently comprising six species from different origins including two species isolated from non-marine environments. In this study, we performed comparative genome analysis of all six species in the clade using their complete genome sequences. We found that two non-marine species, Vibrio casei and Vibrio gangliei, lacked the genes responsible for algal polysaccharide degradation, while a number of glycoside hydrolase genes were enriched in these two species. Expansion of insertion sequences was observed in V. casei and Vibrio rumoiensis, which suggests ongoing genomic changes associated with niche adaptations. The genes responsible for the metabolism of glucosylglycerate, a compound known to play a role as compatible solutes under nitrogen limitation, were conserved across the clade. These characteristics, along with genes encoding species-specific functions, may reflect the habit expansion which has led to the current distribution of Rumoiensis clade species. Genome analysis of all species in a single clade give us valuable insights into the genomic background of the Rumoiensis clade species and emphasize the genomic diversity and versatility of Vibrionaceae.


Assuntos
Genoma Bacteriano , Vibrio/genética , DNA Bacteriano/genética , Genômica , Filogenia , Especificidade da Espécie , Vibrio/classificação
2.
Appl Microbiol Biotechnol ; 101(4): 1581-1592, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27915375

RESUMO

Alginate is a marine non-food-competing polysaccharide that has potential applications in biorefinery. Owing to its large size (molecular weight >300,000 Da), alginate cannot pass through the bacterial cell membrane. Therefore, bacteria that utilize alginate are presumed to have an enzyme that degrades extracellular alginate. Recently, Vibrio algivorus sp. SA2T was identified as a novel alginate-decomposing and alginate-utilizing species. However, little is known about the mechanism of alginate degradation and metabolism in this species. To address this issue, we screened the V. algivorus genomic DNA library for genes encoding polysaccharide-decomposing enzymes using a novel double-layer plate screening method and identified alyB as a candidate. Most identified alginate-decomposing enzymes (i.e., alginate lyases) must be concentrated and purified before extracellular alginate depolymerization. AlyB of V. algivorus heterologously expressed in Escherichia coli depolymerized extracellular alginate without requiring concentration or purification. We found seven homologues in the V. algivorus genome (alyB, alyD, oalA, oalB, oalC, dehR, and toaA) that are thought to encode enzymes responsible for alginate transport and metabolism. Introducing these genes into E. coli enabled the cells to assimilate soluble alginate depolymerized by V. algivorus AlyB as the sole carbon source. The alginate was bioconverted into L-lysine (43.3 mg/l) in E. coli strain AJIK01. These findings demonstrate a simple and novel screening method for identifying polysaccharide-degrading enzymes in bacteria and provide a simple alginate biocatalyst and fermentation system with potential applications in industrial biorefinery.


Assuntos
Alginatos/metabolismo , Polissacarídeo-Liases/metabolismo , Vibrio/enzimologia , Vibrio/metabolismo , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo
3.
Int J Syst Evol Microbiol ; 66(8): 3164-3169, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27199227

RESUMO

An agarose- and alginate-assimilating, Gram-reaction-negative, non-motile, rod-shaped bacterium, designated strain SA2T, was isolated from the gut of a turban shell sea snail (Turbo cornutus) collected near Noto Peninsula, Ishikawa Prefecture, Japan. The 16S rRNA gene sequence of strain SA2T was 99.59 % identical to that of Vibrio rumoiensis DSM 19141T and 98.19 % identical to that of Vibrio litoralis DSM 17657T. This suggested that strain SA2T could be a subspecies of V. rumoiensis or V. litoralis. However, DNA-DNA hybridization results showed only 37.5 % relatedness to DSM 19141T and 44.7 % relatedness to DSM 17657T, which was far lower than the 70 % widely accepted to define common species. Strain SA2T could assimilate agarose as a sole carbon source, whereas strains DSM 19141T and DSM 17657T could not assimilate it at all. Furthermore, results using API 20NE and API ZYM kits indicated that their enzymic and physiological phenotypes were also different. These results suggested that strain SA2T represented a novel species within the genus Vibrio. The major isoprenoid quinone in SA2T was Q-8, and its major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The major fatty acids were summed feature 3, (comprising C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0, and summed feature 8 (comprising C18 : 1ω6c and/or C18 : 1ω7c). The DNA G+C content of SA2T was 40.7 mol%. The name proposed for this novel species of the genus Vibrio is Vibrio algivorus sp. nov., with the type strain designated SA2T (=DSM 29824T=NBRC 111146T).


Assuntos
Microbioma Gastrointestinal , Filogenia , Caramujos/microbiologia , Vibrio/classificação , Alginatos , Animais , Organismos Aquáticos/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácido Glucurônico , Ácidos Hexurônicos , Japão , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Sefarose , Análise de Sequência de DNA , Ubiquinona/química , Vibrio/genética , Vibrio/isolamento & purificação
4.
Appl Microbiol Biotechnol ; 98(2): 629-39, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24169950

RESUMO

Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H2O2) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H2O2 concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H2O2 concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H2O2 concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H2O2 concentrations. Among the ROS generated by fatty-acid ß-oxidation, H2O2 critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo , Escherichia coli/genética , Escherichia coli/fisiologia , Lisina/metabolismo , Mutação , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade
5.
PLoS One ; 12(6): e0180053, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662104

RESUMO

A novel strain Vibrio aphrogenes sp. nov. strain CA-1004T isolated from the surface of seaweed collected on the coast of Mie Prefecture in 1994 [1] was characterized using polyphasic taxonomy including multilocus sequence analysis (MLSA) and a genome based comparison. Both phylogenetic analyses on the basis of 16S rRNA gene sequences and MLSA based on eight protein-coding genes (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA) showed the strain could be placed in the Rumoiensis clade in the genus Vibrio. Sequence similarities of the 16S rRNA gene and the multilocus genes against the Rumoiensis clade members, V. rumoiensis, V. algivorus, V. casei, and V. litoralis, were low enough to propose V. aphrogenes sp. nov. strain CA-1004T as a separate species. The experimental DNA-DNA hybridization data also revealed that the strain CA-1004T was separate from four known Rumoiensis clade species. The G+C content of the V. aphrogenes strain was determined as 42.1% based on the genome sequence. Major traits of the strain were non-motile, halophilic, fermentative, alginolytic, and gas production. A total of 27 traits (motility, growth temperature range, amylase, alginase and lipase productions, and assimilation of 19 carbon compounds) distinguished the strain from the other species in the Rumoiensis clade. The name V. aphrogenes sp. nov. is proposed for this species in the Rumoiensis clade, with CA-1004T as the type strain (JCM 31643T = DSM 103759T).


Assuntos
Alga Marinha/microbiologia , Vibrio/genética , DNA Bacteriano/genética , Genes Bacterianos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Vibrio/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA