Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrastruct Pathol ; 43(1): 56-65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30758240

RESUMO

Electron-microscopic analysis of the ultrastructure of the Krebs-2 carcinoma ascites cells in the first 90 min immediately after their exposure to fragmented double-stranded DNA has been performed. Morphological attributes of the treated cancer cells indicate the induction in these cells of destructive processes of presumably apoptotic type. The predominance of dystrophic-destructive changes in cells after the addition of DNA is supposed to be a consequence of the disturbance in metabolic processes caused by the experimental action.


Assuntos
Carcinoma Krebs 2/ultraestrutura , Membrana Celular/ultraestrutura , Citoplasma/ultraestrutura , DNA/ultraestrutura , Animais , Apoptose/fisiologia , Ascite , DNA/metabolismo , Camundongos , Microscopia Eletrônica/métodos
2.
BMC Cancer ; 16: 651, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538465

RESUMO

BACKGROUND: We report on the results of a phase II clinical trial of Panagen (tablet form of fragmented human DNA preparation) in breast cancer patients (placebo group n = 23, Panagen n = 57). Panagen was administered as an adjuvant leukoprotective agent in FAC and AC chemotherapy regimens. Pre-clinical studies clearly indicate that Panagen acts by activating dendritic cells and induces the development of adaptive anticancer immune response. METHODS: We analyzed 5-year disease-free survival of patients recruited into the trial. RESULTS: Five-year disease-free survival in the placebo group was 40 % (n = 15), compared with the Panagen arm - 53 % (n = 51). Among stage III patients, disease-free survival was 25 and 52 % for placebo (n = 8) and Panagen (n = 25) groups, respectively. Disease-free survival of patients with IIIB + C stage was as follows: placebo (n = 6)-17 % vs Panagen (n = 18)-50 %. CONCLUSIONS: Disease-free survival rate (17 %) of patients with IIIB + C stage breast cancer receiving standard of care therapy is within the global range. Patients who additionally received Panagen demonstrate a significantly improved disease-free survival rate of 50 %. This confirms anticancer activity of Panagen. TRIAL REGISTRATION: ClinicalTrials.gov NCT02115984 from 04/07/2014.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante/métodos , Feminino , Humanos , Estadiamento de Neoplasias , Análise de Sobrevida , Resultado do Tratamento
3.
Cancer Cell Int ; 15: 32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798073

RESUMO

BACKGROUND: Extracellular double-stranded DNA participates in various processes in an organism. Here we report the suppressive effects of fragmented human double-stranded DNA along or in combination with cyclophosphamide on solid and ascites grafts of mouse Krebs-2 tumor cells and DNA preparation on human breast adenocarcinoma cell line MCF-7. METHODS: Apoptosis and necrosis were assayed by electrophoretic analysis (DNA nucleosomal fragmentation) and by measurements of LDH levels in ascitic fluid, respectively. DNA internalization into MCF-7 was analyzed by flow cytometry and fluorescence microscopy. RESULTS: Direct cytotoxic activity of double-stranded DNA (along or in combination with cyclophosphamide) on a solid transplant was demonstrated. This resulted in delayed solid tumor proliferation and partial tumor lysis due to necrosis of the tumor and adjacent tissues. In the case of ascites form of tumor, extensive apoptosis and secondary necrosis were observed. Similarly, MCF-7 cells showed induction of massive apoptosis (up to 45%) as a result of treatments with double-stranded DNA preparation. CONCLUSIONS: Double-stranded DNA (along or in combination with cyclophosphamide) induces massive apoptosis of Krebs-2 ascite cells and MCF-7 cell line (DNA only). In treated mice it reduces the integrity of gut wall cells and contributes to the development of systemic inflammatory reaction.

4.
BMC Cancer ; 15: 122, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25886605

RESUMO

BACKGROUND: We performed a multicenter, double-blind, placebo-controlled, phase II clinical trial of human dsDNA-based preparation Panagen in a tablet form. In total, 80 female patients with stage II-IV breast cancer were recruited. METHODS: Patients received three consecutive FAC (5-fluorouracil, doxorubicin and cyclophosphamide) or AC (doxorubicin and cyclophosphamide) adjuvant chemotherapies (3 weeks per course) and 6 tablets of 5 mg Panagen or placebo daily (one tablet every 2-3 hours, 30 mg/day) for 18 days during each chemotherapy course. Statistical analysis was performed using Statistica 6.0 software, and non-parametric analyses, namely Wilcoxon-Mann-Whitney and paired Wilcoxon tests. To describe the results, the following parameters were used: number of observations (n), median, interquartile range, and minimum-maximum range. RESULTS: Panagen displayed pronounced leukostimulatory and leukoprotective effects when combined with chemotherapy. In an ancillary protocol, anticancer effects of a tablet form of Panagen were analyzed. We show that Panagen helps maintain the pre-therapeutic activity level of innate antitumor immunity and induces formation of a peripheral pool of cytotoxic CD8+ perforin + T-cells. Our 3-year follow-up analysis demonstrates that 24% of patients who received Panagen relapsed or died after the therapy, as compared to 45% in the placebo cohort. CONCLUSIONS: The data collected in this trial set Panagen as a multi-faceted "all-in-one" medicine that is capable of simultaneously sustaining hematopoiesis, sparing the innate immune cells from adverse effects of three consecutive rounds of chemotherapy and boosting individual adaptive immunity. Its unique feature is that it is delivered via gastrointestinal tract and acts through the lymphoid system of intestinal mucosa. Taken together, maintenance of the initial levels of innate immunity, development of adaptive cytotoxic immune response and significantly reduced incidence of relapses 3 years after the therapy argue for the anticancer activity of Panagen. TRIAL REGISTRATION: ClinicalTrials.gov NCT02115984 from 04/07/2014.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , DNA/administração & dosagem , Leucopoese/efeitos dos fármacos , Imunidade Adaptativa/imunologia , Neoplasias da Mama/imunologia , DNA/química , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucopoese/imunologia
5.
Cell Immunol ; 276(1-2): 59-66, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22578800

RESUMO

We investigated the influence of Panagen DNA preparations on laboratory animals and IFN-induced human dendritic cells, as well as analyzed the data from a phase II clinical trial in the therapy of breast cancer. It was shown that this treatment resulted in increased number of CD8+/perforin+ T cells in peripheral lymphoid organs of experimental animals, in mixed lymphocyte culture population and in peripheral blood of breast cancer patients. Moreover, we demonstrated that when Panagen DNA preparations are used in combination with the standard FAC-based breast cancer therapies, non-specific immune response activity remains at the same levels as observed prior to therapy, whereas in FAC-placebo patients, non-specific immunity is greatly diminished.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/efeitos dos fármacos , DNA/farmacologia , Perforina/imunologia , Animais , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Ensaios Clínicos Fase II como Assunto , Células Dendríticas/citologia , Células Dendríticas/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos CBA , Perforina/biossíntese
6.
Breast Cancer (Auckl) ; 16: 11782234211059931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185333

RESUMO

INTRODUCTION: Karanahan, a cancer treatment technology aimed at eradicating tumor-initiating stem cells, has already proven effective in 7 tumor models. Karanahan comprises the following procedures: (1) collecting surgical specimens, (2) determining the duration of the DNA repair process in tumor cells exposed to a cross-linking cytostatic agent, and (3) determining the time point, when cells, including tumor-initiating stem cells, are synchronized in the certain phase of the cell cycle after triple exposure to the cytostatic, becoming vulnerable for the terminal treatment, which is supposed to completely eliminate the rest of survived tumor-initiating stem cells. Determining these basic tumor properties allows to design the schedule for the administration of a cross-linking cytostatic and a complex composite DNA preparation. Being conducted in accordance with the schedule designed, Karanahan results in the large-scale apoptosis of tumor cells with elimination of tumor-initiating stem cells. METHODS: Breast tumor specimens were obtained from patients, and basic tumor properties essential for conducting Karanahan therapy were determined. RESULTS: We report the first use of Karanahan in patients diagnosed with breast cancer. Technical details of handling surgical specimens for determining the essential Karanahan parameters (tumor volume, cell number, cell proliferation status, etc) have been worked out. The terminally ill patient, who was undergoing palliative treatment and whose tumor specimen matched the required criteria, received a complete course of Karanahan. CONCLUSIONS: The results of the treatment conducted indicate that Karanahan technology has a therapeutic potency and can be used as a breast cancer treatment option.

8.
Anticancer Res ; 41(7): 3371-3387, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230133

RESUMO

BACKGROUND/AIM: We compared the therapeutic efficacy of two recently developed experimental anticancer technologies: 1) in situ vaccination based on local immunotherapy with CpG oligonucleotides and anti-OX40 antibodies to activate antitumor immune response and 2) "Karanahan" technology [from the Sanskrit karana ('source') + han ('to kill')] based on the combined injection of cyclophosphamide and double-stranded DNA to eradicate cancer stem cells. MATERIALS AND METHODS: The anticancer approaches were compared on three types of mouse malignant tumors with different grades of immunogenicity: weakly immunogenic carcinoma Krebs-2, moderately immunogenic Lewis carcinoma, and highly immunogenic A20 В-cellular lymphoma. RESULTS: Our results indicated that in situ vaccination was the most effective against the highly immunogenic tumor А20. In addition, "Karanahan" demonstrated high efficiency in all types of tumors, regardless of their immunogenicity or size. CONCLUSION: "Karanahan" therapy showed higher efficacy relative to in situ vaccination with CpG oligonucleotides and anti-OX40 antibodies.


Assuntos
Antineoplásicos/imunologia , Imunoterapia/métodos , Animais , Anticorpos/imunologia , Antígenos de Diferenciação/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Linhagem Celular Tumoral , Ciclofosfamida/imunologia , DNA/imunologia , Feminino , Linfoma/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Células-Tronco Neoplásicas/imunologia , Oligodesoxirribonucleotídeos/imunologia , Receptores OX40/imunologia , Vacinação/métodos
9.
Cell Immunol ; 266(1): 46-51, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20863487

RESUMO

A preparation of human genomic fragmented double-stranded DNA (dsDNA) was used as maturation stimulus in cultures of human dendritic cells (DCs) generated in compliance with the interferon protocol. Culturing of the DCs in medium with 5µg/ml of the DNA preparation was associated with a decrease in the relative proportion of CD14 + cells and an increase in that of CD83 + cells. These changes are markers of DC maturation. The efficiency with which the DNA preparation was able to elicit DC maturation was commensurate with that of lypopolysaccharide from bacterial cell, the standard inducer of DC maturation. Generated ex vivo, matured in the presence of the human DNA preparation, pulsed with tumor antigens mouse DCs were used as a vaccine in biological tests for its antitumor activity. The experimental results demonstrate that reinfusion of mature pulsed with tumor antigens DCs cause a statistically significant suppression of tumor graft growth.


Assuntos
Diferenciação Celular/efeitos dos fármacos , DNA/farmacologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Carcinoma de Ehrlich/imunologia , Carcinoma de Ehrlich/prevenção & controle , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Humanos , Imunoglobulinas/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Fator de Necrose Tumoral alfa/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Antígeno CD83
10.
Cell Immunol ; 262(2): 120-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20170907

RESUMO

Exogenous allogenic DNA as nucleosome-free fragments reaches main cellular compartments (cytoplasm, nucleus) of human dendritic cells and deposits in the nuclear interchromosomal space without visibly changing in linear size. The presence of such allogenic fragmented DNA in medium in which human dendritic cells are cultured produces an enhancement of their allostimulatory activity. This enhancement is comparable to that produced by the standard maturation stimulus lipopolysaccharide Escherichia coli.


Assuntos
DNA/imunologia , Células Dendríticas/imunologia , Endocitose/imunologia , Animais , DNA/ultraestrutura , Células Dendríticas/citologia , Células HeLa , Humanos , Camundongos
11.
Genet Vaccines Ther ; 8: 7, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21040569

RESUMO

BACKGROUND: Immunization of mice with tumor homogenate after combined treatment with cyclophosphamide (CP) and double-stranded DNA (dsDNA) preparation is effective at inhibition of growth of tumor challenged after the treatment. It was assumed that this inhibition might be due to activation of the antigen-presenting cells. The purpose was to develop improved antitumor strategy using mice. We studied the combined action of cytostatics doxorubicin (Dox) plus CP with subsequent dsDNA preparation on tumor growth. METHODS: Three-month old CBA/Lac mice were used in the experiments. Mice were injected with CP and human dsDNA preparation. The percentage of mature dendritic cells (DCs) was estimated by staining of mononuclear cells isolated from spleen and bone marrow 3, 6, and 9 days later with monoclonal antibodies CD34, CD80, and CD86. In the next set of experiments, mice were given intramuscularly injections of 1-3 × 105 tumor cells. Four days later, they were injected intravenously with 6-6.7 mg/kg Dox and intraperitoneally with 100-200 mg/kg CP; 200 mkg human DNA was injected intraperitoneally after CP administration. Differences in tumor size between groups were analyzed for statistical significance by Student's t-test. The MTT-test was done to determine the cytotoxic index of mouse leucocytes from treated groups. RESULTS: The conducted experiments showed that combined treatment with CP and dsDNA preparation produce an increase in the total amount of mature DCs in vivo. Treatment of tumor bearers with preparation of fragmented dsDNA on the background of pretreatment with Dox plus CP demonstrated a strong suppression of tumor growth in two models. RLS, a weakly immunogenic, resistant to alkalyting cytostatics tumor, grew 3.4-fold slower when compared with the control (p < 0.001). In experiment with Krebs-2 tumor, only 2 of the 10 mice in the Dox+CP+DNA group had a palpable tumor on day 16. The cytotoxic index of leucocytes was 86.5% in the Dox+CP+DNA group, but it was 0% in the Dox+CP group. CONCLUSIONS: Thus, the set of experiments we performed showed that exogenous dsDNA, when administered on the background of pretreatment with Dox plus CP, has an antitumor effect possibly due to DC activation.

12.
Anticancer Res ; 40(2): 795-805, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32014922

RESUMO

BACKGROUND/AIM: We previously have described the "3+1" tumors cure approach consisting of individual time schedule of cyclophosphamide and dsDNA preparation administrations. The aim of the study was to adapt the "3+1" approach based on eradication of cancer stem cells to the model of murine ascitic cyclophosphamide-resistant lymphosarcoma (RLS). MATERIALS AND METHODS: Adaptation of the "3+1" approach includes the identification of the timing to disrupt the tumorigenic potential of a certain tumor. RESULTS: The proposed therapeutic scheme allowed complete reduction of primary RLS ascites in experimental animals. However, reduction of primary ascites due to the complementary action of cyclophosphamide and dsDNA was inevitably followed by the development of a secondary one, most likely arising from a solid carcinomatous formation in the peritoneal wall. CONCLUSION: The "3+1" approach resulted in the elimination of cancer stem cells, and, as a consequence, in the complete reduction of RLS ascites.


Assuntos
Linfoma não Hodgkin/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Animais , Linfoma não Hodgkin/patologia , Camundongos
13.
Int J Radiat Biol ; 96(9): 1173-1191, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32658564

RESUMO

THE PURPOSE OF THE ARTICLE: Protection from ionizing radiation is the most important component in the curing malignant neoplasms, servicing atomic reactors, and resolving the situations associated with uncontrolled radioactive pollutions. In this regard, discovering new effective radioprotectors as well as novel principles of protecting living organisms from high-dose radiation is the most important factor, determining the new approaches in medical and technical usage of radiation. MATERIALS AND METHODS: Experimental animals were irradiated on the γ-emitter (Cs137) with a dose of 9.4 Gy. Radioprotective properties of several agents (total RNA, single-stranded RNA, double-stranded RNA and B-190) were estimated by the survival/death rates of experimental animals within 30-90 d. Pathomorphological examination of internal organs end electron microscope assay was done on days 9-12 after irradiation. Cloning and other molecular procedures were performed accordingly to commonly accepted protocols. For assessment of the internalization of labeled nucleic acid, bone marrow cells were incubated with double-stranded RNA labeled with 6-FAM fluorescent dye. Cells with internalized double-stranded RNA were assayed using Axio Imager M1 microscope. In the other experiment, bone marrow cells after incubation with double-stranded RNA were stained with Cy5-labeled anti-CD34 antibodies and assayed using Axioskop 2 microscope. RESULTS: In this study, several biological features of the radioprotective action of double-stranded RNA are characterized. It was shown that 160 µg of the double-stranded RNA per mouse protect experimental animals from the absolutely lethal dose of γ-radiation of 9.4 Gy. In different experiments, 80-100% of irradiated animals survive and live until their natural death. Radioprotective properties of double-stranded RNA were found to be independent on its sequence, but strictly dependent on its double-stranded form. Moreover, double-stranded RNA must have 'open' ends of the molecule to exert its radioprotective activity. CONCLUSIONS: Experiments indicate that radioprotective effect of double-stranded RNA is tightly bound to its internalization into hematopoietic stem cells, which further repopulate the spleen parenchyma of irradiated mice. Actively proliferating progenitors form the splenic colonies, which further serve as the basis for restoration of hematopoiesis and immune function and determine the survival of animals received the lethal dose of radiation.


Assuntos
RNA de Cadeia Dupla/farmacologia , RNA Fúngico/farmacologia , Protetores contra Radiação/farmacologia , Saccharomyces cerevisiae/genética , Animais , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Camundongos , Fatores de Tempo
14.
Genet Vaccines Ther ; 7: 12, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19682353

RESUMO

BACKGROUND: When cyclophosphamide and preparations of fragmented exogenous genomic double stranded DNA were administered in sequence, the regressive effect on the tumor was synergic: this combined treatment had a more pronounced effect than cyclophosphamide alone. Our further studies demonstrated that exogenous DNA stimulated the maturation and specific activities of dendritic cells. This suggests that cyclophosphamide, combined with DNA, leads to an immune response to the tumors that were grafted into the subjects post treatment. METHODS: Three-month old CBA/Lac mice were used in the experiments. The mice were injected with cyclosphamide (200 mkg per 1 kg body weight) and genomic DNA (of human, mouse or salmon sperm origin). The DNA was administered intraperitoneally or subcutaneously. After 23 to 60 days, one million tumor cells were intramuscularly grafted into the mice. In the final experiment, the mice were pre-immunized by subcutaneous injections of 20 million repeatedly thawed and frozen tumor cells. Changes in tumor growth were determined by multiplying the three perpendicular diameters (measured by caliper). Students' t-tests were used to determine the difference between tumor growth and average survival rate between the mouse groups and the controls. RESULTS: An analysis of varying treatments with cyclophosphamide and exogenous DNA, followed by tumor grafting, provided evidence that this combined treatment had an immunizing effect. This inhibitory effect in mice was analyzed in an experiment with the classical immunization of a tumor homogenate. The strongest inhibitory action on a transplanted graft was created through the following steps: cyclophosphamide at 200 mg/kg of body weight administered as a pretreatment; 6 mg fragmented exogenous DNA administered over the course of 3 days; tumor homogenate grafted 10 days following the final DNA injection. CONCLUSION: Fragmented exogenous DNA injected with cyclophosphamide inhibits the growth of tumors that are grafted to mice after this combined treatment.

15.
Eur Cytokine Netw ; 30(2): 43-58, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31486403

RESUMO

The present study demonstrates that monocyte-derived dendritic cells (moDCs) produced in vitro using a GM-CSF and IFN-α differentiation protocol encompass a rare (∼5%) subpopulation of cells showing classical dendritic cell morphology and capable of natural internalization of extracellular self-DNA. We established that DEFB, HMGB1, LL-37 and RAGE antigens, which mediate the process of DNA internalization, are expressed on the surface of moDCs similar to plasmacytoid dendritic cells. However, in constrast to the latter subpopulation, these cells do not produce interleukin (IL)-37. Nonetheless, the process of DNA internalization was not in direct relation to the presence of the above antigens on the surface of these cells. Dendritic cells were sorted into total and non-DNA-internalizing populations and cytokine production was analyzed at 24-48 hours post-DNA treatment. We show that massive secretion of cytokines by dendritic cells is associated with the dsDNA-internalizing subpopulation. A total pool of IFN-moDCs secrete pro-inflammatory "first-wave" cytokines (IL-2, IL-6, IL-8, TNF-α) at both 24 and 48 hours time points. The anti-inflammatory cytokines IL-4 and IL-10 were found to be modestly induced, whereas GM-CSF, G-CSF, and IFN-γ production was strongly induced. Treatment of moDCs with dsDNA results in the up-regulated transcription of IFN-α, IFN-ß, IFN-γ, IL-8, IL-10, and VEGF by 6 hours. Combined dsDNA + chloroquine treatment has a synergistic effect on transcription of only one of the genes tested, with the pro-inflammatory cytokine IFN-ß displaying the strongest fold induction by 24 hours.


Assuntos
DNA/metabolismo , Células Dendríticas/citologia , Endocitose , Espaço Extracelular/metabolismo , Monócitos/citologia , Antígenos de Neoplasias/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Cloroquina/farmacologia , Citocinas/metabolismo , Sondas de DNA/metabolismo , Células Dendríticas/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Feminino , Proteína HMGB1/metabolismo , Humanos , Interferons/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rodaminas/metabolismo , beta-Defensinas/metabolismo , Catelicidinas
16.
Front Genet ; 9: 544, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505319

RESUMO

A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.

17.
Oncotarget ; 9(47): 28486-28499, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29983875

RESUMO

Krebs-2 solid carcinoma was cured using a new "3+1" strategy for eradication of Krebs-2 tumor-initiating stem cells. This strategy was based on synchronization of these cells in a treatment-sensitive phase of the cell cycle. The synchronization mechanism, subsequent destruction of Krebs-2 tumor-initiating stem cells, and cure of mice from a solid graft were found to depend on the temporal profile of the interstrand cross-link repair cycle. Also, the temporal profile of the Krebs-2 interstrand repair cycle was found to have a pronounced seasonal cyclicity at the place of experiments (Novosibirsk, Russia). As a result, the therapeutic effect that is based on application of the described strategy, originally developed for the "winter repair cycle" (November-April), is completely eliminated in the summer period (June-September). We conclude that оne of the possible and the likeliest reasons for our failure to observe the therapeutic effects was the seasonal cyclicity in the duration of the interstrand repair cycle, the parameter that is central to our strategy.

18.
Oncotarget ; 8(6): 9425-9441, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28031533

RESUMO

Using the ability of poorly differentiated cells to natively internalize fragments of extracellular double-stranded DNA as a marker, we isolated a tumorigenic subpopulation present in Krebs-2 ascites that demonstrated the features of tumor-inducing cancer stem cells. Having combined TAMRA-labeled DNA probe and the power of RNA-seq technology, we identified a set of 168 genes specifically expressed in TAMRA-positive cells (tumor-initiating stem cells), these genes remaining silent in TAMRA-negative cancer cells. TAMRA+ cells displayed gene expression signatures characteristic of both stem cells and cancer cells. The observed expression differences between TAMRA+ and TAMRA- cells were validated by Real Time PCR. The results obtained corroborated the biological data that TAMRA+ murine Krebs-2 tumor cells are tumor-initiating stem cells. The approach developed can be applied to profile any poorly differentiated cell types that are capable of immanent internalization of double-stranded DNA.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Krebs 2/genética , Diferenciação Celular , Perfilação da Expressão Gênica/métodos , Transcriptoma , Elementos Alu , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Krebs 2/patologia , DNA/genética , DNA/metabolismo , Corantes Fluorescentes/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Rodaminas/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
19.
Oncotarget ; 7(10): 11580-94, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26872383

RESUMO

We describe the strategy, which allows curing experimental mice engrafted with Krebs-2 ascites. The strategy is based on the facts that i) Krebs-2 tumor-initiating stem cells (TISCs) are naturally capable of internalizing fragments of extracellular double-stranded DNA (dsDNA); ii) upon delivery into TISCs, these dsDNA fragments interfere with the on-going DNA repair process so that TISCs either die or lose their tumorigenic potential. The following 3-step regimen of therapeutic procedures leading to eradication of Krebs-2 ascites is considered. Firstly, three timed injections of cyclophosphamide (CP) exactly matching the interstrand cross-link (ICL) repair phases that lead to synchronization of ascites cells in late S/G2/M. Secondly, additional treatment of ascites 18 hours post each CP injection (at NER/HR transition timepoint) with a composite dsDNA-based preparation interfering with the NER and HR repair pathways, so that tumorigenic properties of ascites cells are compromised. Thirdly, final treatment of mice with a combination of CP and dsDNA injections as ascites cells undergo apoptotic destruction, and the surviving TAMRA+ TISCs arrested in late S/G2/M phases massively enter into G1/S, when they regain sensitivity to CP+dsDNA treatment. Thus, this regimen assures that no viable cells, particularly Krebs-2 TISCs, remain.


Assuntos
Ascite/tratamento farmacológico , Carcinoma Krebs 2/tratamento farmacológico , Ciclofosfamida/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Ascite/genética , Ascite/metabolismo , Ascite/patologia , Carcinoma Krebs 2/genética , Carcinoma Krebs 2/metabolismo , Carcinoma Krebs 2/patologia , DNA/administração & dosagem , DNA/genética , Modelos Animais de Doenças , Esquema de Medicação , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/patologia , Transfecção
20.
Cancer Biol Ther ; 15(10): 1378-94, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25117082

RESUMO

It has been established previously that up to 40% of mouse CD34(+) hematopoietic stem cells are capable of internalizing exogenous dsDNA fragments both in vivo and ex vivo. Importantly, when mice are treated with a combination of cyclophosphamide and dsDNA, the repair of interstrand crosslinks in hematopoietic progenitors is attenuated, and their pluripotency is altered. Here we show for the first time that among various actively proliferating mammalian cell populations there are subpopulations capable of internalizing dsDNA fragments. In the context of cancer, such dsDNA-internalizing cell subpopulations display cancer stem cell-like phenotype. Furthermore, using Krebs-2 ascites cells as a model, we found that upon combined treatment with cyclophosphamide and dsDNA, engrafted material loses its tumor-initiating properties which we attribute to the elimination of tumor-initiating stem cell subpopulation or loss of its tumorigenic potential.


Assuntos
Apoptose/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Animais , Antineoplásicos/farmacologia , Ascite/metabolismo , Ascite/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carcinoma Krebs 2/metabolismo , Carcinoma Krebs 2/patologia , Proliferação de Células/efeitos dos fármacos , Ciclofosfamida/farmacologia , DNA/metabolismo , DNA/farmacologia , Endocitose , Glioblastoma/metabolismo , Glioblastoma/patologia , Xenoenxertos , Camundongos Endogâmicos CBA , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Reparo de DNA por Recombinação/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA