RESUMO
Hypertrophic scarring is a major source of morbidity. Sex hormones are not classically considered modulators of scarring. However, based on increased frequency of hypertrophic scarring in patients on testosterone, we hypothesized that androgenic steroids induce abnormal scarring and developed a preclinical porcine model to explore these effects. Mini-swine underwent castration, received no testosterone (noT) or biweekly testosterone therapy (+T), and underwent excisional wounding. To create a delayed wound healing model, a subset of wounds were re-excised at 2 weeks. Scars from postoperative day 42 (POD42) and delayed wounds (POD28) were harvested 6 weeks after initial wounding for analysis via histology, bulk RNA-seq, and mechanical testing. Histologic analysis of scars from +T animals showed increased mean fibrosis area (16 mm2noT, 28 mm2+T; p = .007) and thickness (0.246 mm2noT, 0.406 mm2+T; p < .001) compared to noT. XX+T and XY+T scars had greater tensile burst strength (p = .024 and p = .013, respectively) compared to noT swine. Color deconvolution analysis revealed greater deposition of type I and type III collagen as well as increased collagen type I:III ratio in +T scars. Dermatopathologist histology scoring showed that +T exposure was associated with worse overall scarring (p < .05). Gene ontology analysis found that testosterone exposure was associated with upregulation of cellular metabolism and immune response gene sets, while testosterone upregulated pathways related to keratinization and laminin formation on pathway analysis. In conclusion, we developed a preclinical porcine model to study the effects of the sex hormone testosterone on scarring. Testosterone induces increased scar tissue deposition and appears to increase physical strength of scars via supraphysiologic deposition of collagen and other ECM factors. The increased burst strength seen in both XX and XY animals suggests that hormone administration has a strong influence on scar mechanical properties independent of chromosomal sex. Anti-androgen topical therapies may be a promising future area of research.
Assuntos
Cicatriz Hipertrófica , Humanos , Suínos , Animais , Matriz Extracelular , Testosterona/farmacologia , Colágeno Tipo I , LamininaRESUMO
Surgical intervention is required to successfully treat severe, large-gap (≥4 cm) peripheral nerve injuries. However, all existing treatments have shortcomings and an alternative to the use of autologous nerves is needed. Human and porcine nerves are physiologically similar, with comparable dimensions and architecture, presence and distribution of Schwann cells, and conserved features of the extracellular matrix (ECM). We report the repair of fully transected radial nerves in 10 Rhesus Macaques using viable, whole sciatic nerve from genetically engineered (GalT-KO), designated pathogen free (DPF) porcine donors. This resulted in the regeneration of the transected nerve, and importantly, recovery of wrist extension function, distal muscle reinnervation, and recovery of nerve conduction velocities and compound muscle action potentials similar to autologous controls. We also demonstrate the absence of immune rejection, systemic porcine cell migration, and detectable residual porcine material. Our preliminary findings support the safety and efficacy of viable porcine nerve transplants, suggest the interchangeable therapeutic use of cross-species cells, and highlight the broader clinical potential of xenotransplantation.
Assuntos
Regeneração Nervosa , Nervo Isquiático , Humanos , Suínos , Animais , Macaca mulatta , Regeneração Nervosa/fisiologia , Transplante Heterólogo , Nervo Isquiático/fisiologia , Células de Schwann/fisiologia , Células de Schwann/transplanteRESUMO
A varying oxygen environment is known to affect cellular function in disease as well as activity of various therapeutics. For transient structures, whether they are unconstrained therapeutic transplants, migrating cells during tumor metastasis, or cell populations induced by an immunological response, the role of oxygen in their fate and function is known to be pivotal albeit not well understood in vivo. To address such a challenge in the case of generation of a bioartificial pancreas, we have combined fluorine magnetic resonance imaging and unsupervised machine learning to monitor over time the spatial arrangement and the oxygen content of implants encapsulating pancreatic islets that are unconstrained in the intraperitoneal (IP) space of healthy and diabetic mice. Statistically significant trends in the postimplantation temporal dependence of oxygen content between aggregates of 0.5-mm or 1.5-mm alginate microcapsules were identified in vivo by looking at their dispersity as well as arrangement in clusters of different size and estimating oxygen content on a pixel-by-pixel basis from thousands of 2D images. Ultimately, we found that this dependence is stronger for decreased implant capsule size consistent with their tendency to also induce a larger immunological response. Beyond the bioartificial pancreas, this work provides a framework for the simultaneous spatiotemporal tracking and oxygen sensing of other cell populations and biomaterials that change over time to better understand and improve therapeutic design across diverse applications such as cellular transplant therapy, treatments preventing metastatic formation, and modulators for improving immunologic response, for all of which oxygen is a major mechanistic component.
Assuntos
Aprendizado de Máquina , Imageamento por Ressonância Magnética , Oxigênio/análise , Próteses e Implantes , Alginatos/química , Animais , Materiais Biocompatíveis/química , Análise por Conglomerados , Flúor/análise , Halogenação , Imageamento Tridimensional , Imunidade , Secreção de Insulina , Transplante das Ilhotas Pancreáticas , Camundongos Endogâmicos C57BL , Pressão ParcialRESUMO
The liver is an organ with impressive regenerative potential and has been shown to heal sizable portions after their removal. However, certain diseases can overstimulate its potential to self-heal and cause excessive cellular matrix and collagen buildup. Decompensation of liver fibrosis leads to cirrhosis, a buildup of fibrotic ECM that impedes the liver's ability to efficiently exchange fluid. This review summarizes the complex immunological activities in different liver diseases, and how failure to maintain liver homeostasis leads to progressive fibrotic tissue development. We also discuss a variety of pathologies that lead to liver cirrhosis, such as alcoholic liver disease and chronic hepatitis B virus (HBV). Mesenchymal stem cells are widely studied for their potential in tissue replacement and engineering. Herein, we discuss the potential of MSCs to regulate immune response and alter the disease state. Substantial efforts have been performed in preclinical animal testing, showing promising results following inhibition of host immunity. Finally, we outline the current state of clinical trials with mesenchymal stem cells and other cellular and non-cellular therapies as they relate to the detection and treatment of liver cirrhosis.
Assuntos
Suscetibilidade a Doenças , Hepatopatias/etiologia , Hepatopatias/metabolismo , Animais , Biomarcadores , Terapia Combinada , Gerenciamento Clínico , Progressão da Doença , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Hepatopatias/diagnóstico , Hepatopatias/terapia , Pesquisa Translacional BiomédicaRESUMO
Implantable medical devices have revolutionized modern medicine. However, immune-mediated foreign body response (FBR) to the materials of these devices can limit their function or even induce failure. Here we describe long-term controlled-release formulations for local anti-inflammatory release through the development of compact, solvent-free crystals. The compact lattice structure of these crystals allows for very slow, surface dissolution and high drug density. These formulations suppress FBR in both rodents and non-human primates for at least 1.3 years and 6 months, respectively. Formulations inhibited fibrosis across multiple implant sites-subcutaneous, intraperitoneal and intramuscular. In particular, incorporation of GW2580, a colony stimulating factor 1 receptor inhibitor, into a range of devices, including human islet microencapsulation systems, electrode-based continuous glucose-sensing monitors and muscle-stimulating devices, inhibits fibrosis, thereby allowing for extended function. We believe that local, long-term controlled release with the crystal formulations described here enhances and extends function in a range of medical devices and provides a generalized solution to the local immune response to implanted biomaterials.
Assuntos
Fibrose/etiologia , Fibrose/prevenção & controle , Próteses e Implantes/efeitos adversos , Animais , Preparações de Ação Retardada , Composição de Medicamentos , Macrófagos/efeitos dos fármacos , RoedoresRESUMO
Host recognition and immune-mediated foreign body response to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knockout and CXCL13 neutralization. Interestingly, colony stimulating factor-1 receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, reactive oxygen species production and phagocytosis. Our results indicate that targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression.
Assuntos
Materiais Biocompatíveis/efeitos adversos , Reação a Corpo Estranho/induzido quimicamente , Reação a Corpo Estranho/metabolismo , Próteses e Implantes/efeitos adversos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Reação a Corpo Estranho/imunologia , Camundongos , PrimatasRESUMO
The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals and plastics, significantly abrogated foreign body reactions and fibrosis when compared with smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5-mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than five times longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved simply by tuning their spherical dimensions.
Assuntos
Reação a Corpo Estranho/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , PrimatasRESUMO
BACKGROUND: Cyclophosphamide treatment on a six-day repeating metronomic schedule induces a dramatic, innate immune cell-dependent regression of implanted gliomas. However, little is known about the underlying mechanisms whereby metronomic cyclophosphamide induces innate immune cell mobilization and recruitment, or about the role of DNA damage and cell stress response pathways in eliciting the immune responses linked to tumor regression. METHODS: Untreated and metronomic cyclophosphamide-treated human U251 glioblastoma xenografts were analyzed on human microarrays at two treatment time points to identify responsive tumor cell-specific factors and their upstream regulators. Mouse microarray analysis across two glioma models (human U251, rat 9L) was used to identify host factors and gene networks that contribute to the observed immune and tumor regression responses. RESULTS: Metronomic cyclophosphamide increased expression of tumor cell-derived DNA damage, cell stress, and cell death genes, which may facilitate innate immune activation. Increased expression of many host (mouse) immune networks was also seen in both tumor models, including complement components, toll-like receptors, interferons, and cytolysis pathways. Key upstream regulators activated by metronomic cyclophosphamide include members of the interferon, toll-like receptor, inflammatory response, and PPAR signaling pathways, whose activation may contribute to anti-tumor immunity. Many upstream regulators inhibited by metronomic cyclophosphamide, including hypoxia-inducible factors and MAP kinases, have glioma-promoting activity; their inhibition may contribute to the therapeutic effectiveness of the six-day repeating metronomic cyclophosphamide schedule. CONCLUSIONS: Large numbers of responsive cytokines, chemokines and immune regulatory genes linked to innate immune cell recruitment and tumor regression were identified, as were several immunosuppressive factors that may contribute to the observed escape of some tumors from metronomic CPA-induced, immune-based regression. These factors may include useful biomarkers that facilitate discovery of clinically effective immunogenic metronomic drugs and treatment schedules, and the selection of patients most likely to be responsive to immunogenic drug scheduling.
Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Imunidade Inata/genética , Proteínas de Neoplasias/biossíntese , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Ciclofosfamida/administração & dosagem , Dano ao DNA/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Glioma/tratamento farmacológico , Glioma/imunologia , Humanos , Camundongos , Proteínas de Neoplasias/genética , Ratos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Metronomic cyclophosphamide given on an intermittent, 6-day repeating schedule, but not on an exposure dose-equivalent daily schedule, activates an anti-tumor innate immune response that leads to major regression of large implanted gliomas, without anti-angiogenesis. METHODS AND APPROACH: Mice bearing implanted 9L gliomas were used to investigate the effects of this 6-day repeating, immunogenic cyclophosphamide schedule on myeloid-derived suppressor cells, which are pro-angiogenic and can inhibit anti-tumor immunity, and to elucidate the mechanism whereby the innate immune cell-dependent tumor regression response to metronomic cyclophosphamide treatment is blocked by several anti-angiogenic receptor tyrosine kinase inhibitors. RESULTS: Intermittent metronomic cyclophosphamide scheduling strongly increased glioma-associated CD11b+ immune cells but not CD11b+Gr1+ myeloid-derived suppressor cells, while bone marrow and spleen reservoirs of the suppressor cells were decreased. The inhibition of immune cell recruitment and tumor regression by anti-angiogenic receptor tyrosine kinase inhibitors, previously observed in several brain tumor models, was recapitulated in the 9L tumor model with the VEGFR2-specific inhibitory monoclonal antibody DC101 (p < 0.01), implicating VEGFR2 signaling as an essential step in metronomic cyclophosphamide-stimulated immune cell recruitment. In contrast, sorafenib, a multi-receptor tyrosine kinase inhibitor with comparatively weak VEGF receptor phosphorylation inhibitory activity, was strongly anti-angiogenic but did not block metronomic cyclophosphamide-induced innate immunity or tumor regression (p > 0.05). CONCLUSIONS: The interference by receptor tyrosine kinase inhibitors in the immunogenic actions of intermittent metronomic chemotherapy is not a consequence of anti-angiogenesis per se, as demonstrated in an implanted 9L tumor model. Furthermore, this undesirable interaction with tyrosine kinase inhibitors can be avoided by using anti-angiogenic drugs that spare the VEGFR2 pathway.
Assuntos
Ciclofosfamida/administração & dosagem , Imunidade Inata/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Administração Metronômica , Inibidores da Angiogênese/administração & dosagem , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Biomedical devices such as islet-encapsulating systems are used for treatment of type 1 diabetes (T1D). Despite recent strides in preventing biomaterial fibrosis, challenges remain for biomaterial scaffolds due to limitations on cells contained within. The study demonstrates that proliferation and function of insulinoma (INS-1) cells as well as pancreatic rat islets may be improved in alginate hydrogels with optimized gel%, crosslinking, and stiffness. Quantitative polymerase chain reaction (qPCR)-based graft phenotyping of encapsulated INS-1 cells and pancreatic islets identified a hydrogel stiffness range between 600 and 1000 Pa that improved insulin Ins and Pdx1 gene expression as well as glucose-sensitive insulin-secretion. Barium chloride (BaCl2) crosslinking time is also optimized due to toxicity of extended exposure. Despite possible benefits to cell viability, calcium chloride (CaCl2)-crosslinked hydrogels exhibited a sharp storage modulus loss in vitro. Despite improved stability, BaCl2-crosslinked hydrogels also exhibited stiffness losses over the same timeframe. It is believed that this is due to ion exchange with other species in culture media, as hydrogels incubated in dIH2O exhibited significantly improved stability. To maintain cell viability and function while increasing 3D matrix stability, a range of useful media:dIH2O dilution ratios for use are identified. Such findings have importance to carry out characterization and optimization of cell microphysiological systems with high fidelity in vitro.
Assuntos
Alginatos , Sobrevivência Celular , Diabetes Mellitus Tipo 1 , Hidrogéis , Alginatos/química , Alginatos/farmacologia , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Ratos , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Cloretos/metabolismo , Cloretos/farmacologia , Transplante das Ilhotas Pancreáticas/métodos , Insulina/metabolismo , Alicerces Teciduais/química , Linhagem Celular Tumoral , Compostos de Bário/farmacologia , Compostos de Bário/químicaRESUMO
Objective: Nerve scarring after traumatic or iatrogenic exposure can lead to impaired function and pain. Nerve-adjacent biomaterials promoting a regenerative tissue response may help reduce perineural fibrosis. Our prior work suggests that testosterone may promote fibrotic skin scarring, but it is unknown how testosterone alters nerve fibrosis or shifts the response to biomaterials. Approach: Sterilized Lewis rats received either testosterone cypionate (+T) or placebo (-T) biweekly. Fifteen days later, wounds were created over the sciatic nerve and covered with an acellular matrix (AM) or closed via primary closure (PC). At day 42, force gauge testing measured the force required to mobilize the nerve, and wound tissue was analyzed. Results: Nerve mobilization force was greater in +T versus -T wounds (p < 0.01). Nerves tore before gliding in 60% of +T versus 6% of -T rats. Epidermal gap (p < 0.01), scar width (p < 0.01), and cross-sectional scar tissue area (p = 0.02) were greater in +T versus -T rats. +T versus -T rats expressed less Col-3 (p = 0.02) and CD68 (p = 0.02). Nerve mobilization force trended nonsignificantly higher for PC versus AM wounds and for +T versus -T wounds within the AM cohort. Innovation: Testosterone increases nerve tethering in the wound healing milieu, altering repair and immune cell balances. Conclusion: Testosterone significantly increases the force required to mobilize nerves in wound beds and elevates histological markers of scarring, suggesting that testosterone-induced inflammation may increase perineural adhesion. Testosterone may reduce the potential anti-tethering protective effect of AM. Androgen receptor antagonism may represent a therapeutic target to reduce scar-related nerve morbidity.
RESUMO
BACKGROUND: Breast implant safety issues have resulted in the need for global product recalls and medical device tracing. Conventional methods of breast implant tracing, have to date proven to be unsuccessful. This study aims to evaluate the effectiveness of high-resolution ultrasound (HRUS) screening in identifying implanted breast devices. METHODS: Data from 113 female patients undergoing preoperative ultrasound screening for secondary breast surgery between 2019 and 2022 was prospectively reviewed to evaluate the effectiveness of HRUS imaging with the aid of a sonographic surface catalog to identify the surface and brand type of implanted breast devices. To corroborate the findings and assess the reproducibility of the approach, further evaluations were replicated in New Zealand white rabbits and compared with the results found in humans. RESULTS: In the human recipients, implant surface and brand types were correctly identified by ultrasound imaging in 99% (112 of 113) and 96% (69 of 72) of the cases, either consultation-only or revision, respectively. This constituted an overall success rate of 98% (181 of 185). Furthermore, in a corroborating New Zealand white rabbit model where full-scale commercial implants were introduced and monitored over many months, from the total 28 analyzed, the surface was accurately identified in a total of 27 cases (the one failure being before generation of a sonograph surface catalogue), demonstrating an overall success rate of 96.4%. CONCLUSION: HRUS is, therefore, a valid and first-hand tool for breast implant imaging that can correctly evaluate both surface type and brand type alongside other variables such as implant placement, positioning, flipping, or rupture. CLINICAL RELEVANCE STATEMENT: HRUS is a valid and first-hand tool for the identification and traceability of breast implants that evaluates surface type and brand type. This low-cost, accessible, and reproducible practice provides patients with peace of mind and surgeons with a promising diagnostic tool.
Assuntos
Implante Mamário , Implantes de Mama , Humanos , Feminino , Animais , Coelhos , Géis de Silicone , Reprodutibilidade dos Testes , Falha de Prótese , Implante Mamário/métodosRESUMO
T cells are critical mediators of antigen-specific immune responses and are common targets for immunotherapy. Biomaterial scaffolds have previously been used to stimulate antigen-presenting cells to elicit antigen-specific immune responses; however, structural and molecular features that directly stimulate and expand naïve, endogenous, tumor-specific T cells in vivo have not been defined. Here, an artificial lymph node (aLN) matrix is created, which consists of an extracellular matrix hydrogel conjugated with peptide-loaded-MHC complex (Signal 1), the co-stimulatory signal anti-CD28 (Signal 2), and a tethered IL-2 (Signal 3), that can bypass challenges faced by other approaches to activate T cells in situ such as vaccines. This dynamic immune-stimulating platform enables direct, in vivo antigen-specific CD8+ T cell stimulation, as well as recruitment and coordination of host immune cells, providing an immuno-stimulatory microenvironment for antigen-specific T cell activation and expansion. Co-injecting the aLN with naïve, wild-type CD8+ T cells results in robust activation and expansion of tumor-targeted T cells that kill target cells and slow tumor growth in several distal tumor models. The aLN platform induces potent in vivo antigen-specific CD8+ T cell stimulation without the need for ex vivo priming or expansion and enables in situ manipulation of antigen-specific responses for immunotherapies.
Assuntos
Linfócitos T CD8-Positivos , Linfonodos , Animais , Linfonodos/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Ativação Linfocitária , Hidrogéis/química , Imunoterapia/métodos , Matriz Extracelular/metabolismo , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Humanos , Interleucina-2/metabolismo , Peptídeos/química , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BLRESUMO
Delivery of self-amplifying mRNA (SAM) has high potential for infectious disease vaccination due its self-adjuvating and dose-sparing properties. Yet a challenge is the susceptibility of SAM to degradation and the need for SAM to reach the cytosol fully intact to enable self-amplification. Lipid nanoparticles have been successfully deployed at incredible speed for mRNA vaccination, but aspects such as cold storage, manufacturing, efficiency of delivery, and the therapeutic window would benefit from further improvement. To investigate alternatives to lipid nanoparticles, we developed a class of >200 biodegradable end-capped lipophilic poly(beta-amino ester)s (PBAEs) that enable efficient delivery of SAM in vitro and in vivo as assessed by measuring expression of SAM encoding reporter proteins. We evaluated the ability of these polymers to deliver SAM intramuscularly in mice, and identified a polymer-based formulation that yielded up to 37-fold higher intramuscular (IM) expression of SAM compared to injected naked SAM. Using the same nanoparticle formulation to deliver a SAM encoding rabies virus glycoprotein, the vaccine elicited superior immunogenicity compared to naked SAM delivery, leading to seroconversion in mice at low RNA injection doses. These biodegradable nanomaterials may be useful in the development of next-generation RNA vaccines for infectious diseases.
RESUMO
Low-intensity focused ultrasound (LIFU) uses ultrasonic pulsations at lower intensities than ultrasound and is being tested as a reversible and precise neuromodulatory technology. Although LIFU-mediated blood-brain barrier (BBB) opening has been explored in detail, no standardized technique for blood-spinal cord barrier (BSCB) opening has been established to date. Therefore, this protocol presents a method for successful BSCB disruption using LIFU sonication in a rat model, including descriptions of animal preparation, microbubble administration, target selection and localization, as well as BSCB disruption visualization and confirmation. The approach reported here is particularly useful for researchers who need a fast and cost-effective method to test and confirm target localization and precise BSCB disruption in a small animal model with a focused ultrasound transducer, evaluate the BSCB efficacy of sonication parameters, or explore applications for LIFU at the spinal cord, such as drug delivery, immunomodulation, and neuromodulation. Optimizing this protocol for individual use is recommended, especially for advancing future preclinical, clinical, and translational work.
Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Ratos , Animais , Medula Espinal/diagnóstico por imagem , Ultrassonografia , Barreira Hematoencefálica/diagnóstico por imagem , Modelos AnimaisRESUMO
Type 1 diabetes (T1D) is a life-threatening condition for which islet transplantation offers a way to extend longevity and vastly improve quality of life, but the degree and duration of success can vary greatly due to the patient's protective immunity against foreign material. The field is in need of cellular engineering modalities to promote a localized, tolerogenic environment to protect transplanted islet tissue. Artificial antigen-presenting cells (aAPCs) can be designed exogenously to mimic immune cells, such as dendritic cells, and administered to patients, allowing greater control over T cell differentiation. As regulatory T cell (Treg) modulation can reduce the activity of cytotoxic T-effector populations, this strategy can be used to promote immune acceptance of both biomaterials and cellular transplants, such as islets. A new class of poly(lactic-co-glycolic acid) (PLGA) and PLGA/PBAE-blend aAPCs containing transforming growth factor beta and conjugated with anti-CD3 and anti-CD28 antibodies, called tolerogenic aAPCs (TolAPCs), are specifically designed to generate a tolerogenic response by inducing Tregs. We characterized TolAPCs' physical and chemical properties via advanced particle imaging and sizing modalities and investigated their impact on the local and systemic immune system across BALB/c and C57BL/6 mouse strains as well as healthy male and female mice via histologic, gene expression, and immunofluorescence staining methods. Strain-specific differences were observed, whereas sex made no difference in the TolAPC response. TolAPCs stimulated the expansion of FOXP3+ Tregs and provided islet cell protection, maintaining improved glucose-stimulated insulin secretion in vitro when co-cultured with cytotoxic CD8+ T cells. We also explored the ability of this TolAPC platform to promote tolerance in a streptozotocin-induced murine T1D C57BL/6 mouse model. We achieved partial islet protection over the first few days following co-injection with PLGA/PBAE TolAPCs; however, grafts failed soon thereafter. Analysis of the local injection site demonstrated that other immune cell types, including APCs and cytotoxic natural killer cells, increased in the islet injection site. While we aimed to promote a localized tolerogenic microenvironment in vivo using biodegradable TolAPCs to induce Tregs and extend islet transplant durability, further TolAPC improvements will be required to both elongate efficacy and control additional immune cell responders.
Assuntos
Ilhotas Pancreáticas , Linfócitos T Reguladores , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/cirurgia , Transplante de Pâncreas , Linfócitos T Reguladores/imunologia , Masculino , Animais , Camundongos , Feminino , Diabetes Mellitus Tipo 1/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/uso terapêutico , Tamanho da PartículaRESUMO
Immuno-oncology therapies have been of great interest with the goal of inducing sustained tumor regression, but clinical results have demonstrated the need for improved and widely applicable methods. An antigen-free method of cancer immunotherapy can stimulate the immune system to recruit lymphocytes and produce immunostimulatory factors without prior knowledge of neoantigens, while local delivery reduces the risk of systemic toxicity. To improve the interactions between tumor cells and cytotoxic lymphocytes, a gene delivery nanoparticle platform was engineered to reprogram the tumor microenvironment (TME) in situ to be more immunostimulatory by inducing tumor-associated antigen-presenting cells (tAPCs) to activate cytotoxic lymphocytes against the tumor. Biodegradable, lipophilic poly (beta-amino ester) (PBAE) nanoparticles were synthesized and used to co-deliver mRNA constructs encoding a signal 2 co-stimulatory molecule (4-1BBL) and a signal 3 immuno-stimulatory cytokine (IL-12), along with a nucleic acid-based immunomodulatory adjuvant. Nanoparticles are combined with a thermoresponsive block copolymer for gelation at the injection site for local NP retention at the tumor. The reprogramming nanoparticle gel synergizes with immune checkpoint blockade (ICB) to induce tumor regression and clearance in addition to resistance to tumor rechallenge at a distant site. In vitro and in vivo studies reveal increases in immunostimulatory cytokine production and recruitment of immune cells as a result of the nanoparticles. Intratumoral injection of nanoparticles encapsulating mRNA encoding immunostimulatory agents and adjuvants via an injectable thermoresponsive gel has great translational potential as an immuno-oncology therapy that can be accessible to a wide range of patients.
Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , RNA Mensageiro/genética , Antineoplásicos/farmacologia , Polímeros/farmacologia , Adjuvantes Imunológicos/farmacologia , Neoplasias/terapia , Interleucina-12 , Microambiente TumoralRESUMO
OBJECTIVE: Here we investigate the ability of low-intensity ultrasound (LIUS) applied to the spinal cord to modulate the transmission of motor signals. METHODS: Male adult Sprague-Dawley rats (n = 10, 250-300 g, 15 weeks old) were used in this study. Anesthesia was initially induced with 2% isoflurane carried by oxygen at 4 L/min via a nose cone. Cranial, upper extremity, and lower extremity electrodes were placed. A thoracic laminectomy was performed to expose the spinal cord at the T11 and T12 vertebral levels. A LIUS transducer was coupled to the exposed spinal cord, and motor evoked potentials (MEPs) were acquired each minute for either 5- or 10-minutes of sonication. Following the sonication period, the ultrasound was turned off and post-sonication MEPs were acquired for an additional 5 minutes. RESULTS: Hindlimb MEP amplitude significantly decreased during sonication in both the 5- (p < 0.001) and 10-min (p = 0.004) cohorts with a corresponding gradual recovery to baseline. Forelimb MEP amplitude did not demonstrate any statistically significant changes during sonication in either the 5- (p = 0.46) or 10-min (p = 0.80) trials. CONCLUSION: LIUS applied to the spinal cord suppresses MEP signals caudal to the site of sonication, with recovery of MEPs to baseline after sonication. SIGNIFICANCE: LIUS can suppress motor signals in the spinal cord and may be useful in treating movement disorders driven by excessive excitation of spinal neurons.